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Abstract
Objective

Although classification systems and scores for capillaroscopy interpretation have been published, there is a 
lack of homogenisation for the procedure, especially in the way and place the images are taken, the counting of 

the capillaries and the measuring of their size. Our objective is to provide a deep learning-based software to obtain 
objective and exhaustive data for the whole nailfold without increasing the time or effort needed to do the 

examination, or requiring expensive equipment.

Methods
An automated software to count nailfold capillaries has been designed, through an exploratory image dataset 

of 2,713 images with 18,000 measurements of 3 different types. Subsequently, application rules have been created 
to detect the morphology of nailfold videocapillaroscopy images, through a training set of images. The software 
reliability has been evaluated with standard metrics used in the machine learning field for object detection tasks, 

comparing automatic and manual counting on the same NVC images.

Results
A mean average precision (mAP) of 0.473 is achieved for detecting and classifying capillaries and haemorrhages 
by their shape, and a mAP of 0.515 is achieved for detecting and classifying capillaries by their size. A precision 

of 83.84% and a recall of 92.44% in the identification of capillaries was estimated.

Conclusion
Deep learning is a useful tool in nailfold videocapillaroscopy that allows to analyse objectively and homogeneously 

images taken with multiple devices. It should make the assessment of the capillary morphology in nailfold video 
capillaroscopy easier, quicker, more complete and accessible to everyone.
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Introduction
Nailfold capillaroscopy is a cheap, 
convenient technique to study pa-
tients with Raynaud’s phenomenon 
(RP). Its utility relies not only on its 
capacity to help in the diagnosis of 
systemic sclerosis and scleroderma-
like diseases, but also on the capacity 
to rule out primary RP. Furthermore, 
nailfold capillaroscopy is increasing-
ly used in research regarding other 
conditions (1).
Although classification systems and 
scores for capillaroscopy interpreta-
tion have been published (2, 3), there 
is a lack of homogenisation for the 
procedure, especially in the way and 
place the images are taken, the count-
ing of the capillaries and the measur-
ing of their size.
Oftentimes physicians do not gather 
objective data when performing their 
capillaroscopy reports, and rely on 
their intuition after observing just a 
few capillaries of each nailfold, and 
most of the time they do not take any 
measurement of a capillary to deter-
mine whether it is enlarged or it is a 
giant capillary. This can lead to bias 
caused by only looking at arbitrary 
sections of the nailfold or even only 
examining a few fingers of the pa-
tient. Saez et al. showed that the in-
terobserver variability in the analysis 
of capillaroscopy images was very 
high (4). Boulon et al. (5) studied 
the agreement between 2 independ-
ent observers and concluded that the 
Maricq and Cutolo classifications 
have moderate reproducibility. Fur-
thermore, it has been observed that 
quantitative alterations of apical di-
ameter are an independent predictor 
for the development of scleroderma 
(6).
In the last decades there has also been 
an increasing number of portable mi-
croscope brands and other devices 
available to perform capillaroscopy 
and to obtain the pictures of the nail 
bed capillaries. This great variability 
of the capillaroscopic models used, 
with different magnifications and 
different approaches, obtain highly 
heterogeneous images that further 
increase the interobserver variability.
Recent research points at the possi-

bility of future systems that integrate 
meaningful quantitative metrics for 
capillaroscopy images in a partially 
automated way (7, 8), which closely 
matches our approach. Previous re-
search about automatic location and 
parameters measurement of capillar-
ies has been published using different 
techniques that try to improve NVC 
with other tools such as Doppler laser 
and optoacoustic imaging (9, 10).
We instead propose a deep learning 
and data-driven approach to nailfold 
capillaroscopy practice, facilitated 
with an interactive web-based tool. 
Our algorithm is able to recognise 
capillaries in images obtained with 
any microscope, generate automatic 
measurements of each capillary and 
take advantage of this information 
along with the physician verification 
resulting in an exhaustive analysis 
that is able to produce detailed re-
ports of each patient. Furthermore, 
this platform serves as a collabora-
tive and reporting application, where 
professionals can share information, 
discuss, validate, and boost their re-
search efforts. It includes all neces-
sary procedures to upload new data 
and organise it in separate projects, 
patients and examinations. We also 
take advantage of our own platform 
to prepare the training dataset and 
train our models on a regular basis. 
Thanks to the data heterogeneity, our 
models produce good results with 
images of many different origins.
Our main motivation is to help make 
nailfold capillaroscopy a more ac-
cessible diagnostic tool, and focus 
on providing a software framework 
for professionals to obtain objective  
and exhaustive data (mainly capillary 
count, capillary classification and 
measurement of capillaries apex and 
limbs) for the whole nailfold without 
increasing the time or effort needed 
to do the examination, or requiring 
expensive equipment (9, 10).
Our project is a multicentre pro-
spective study with a follow-up of 5 
years. Its main objective was to de-
termine the agreement between the 
deep learning software and the con-
sensus among several highly experi-
enced capillaroscopists.
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Materials and methods
To achieve our objectives, a complete 
software solution was built. It is com-
posed of separated parts:
•	 A database where information is 

stored for the following items:
- Capillaroscopy examinations 

and associated patient with their 
images organised by finger and 
nailfold sector where they were 
taken (or panoramic images).

- Image collections for uploading 
many unrelated images, mainly 
for research and dataset elabora-
tion.

- A standard capillaroscopy form 
definition, and a standard capil-
laroscopy report template for 
printing results. Both of them 
can be customised.

- Projects, folders and subfold-
ers for organising examinations 
and collections.

•	 A web application for easy man-
agement and manipulation of cap-
illaroscopy data.

•	 A desktop application carefully de-
signed for capturing capillarosco-
py images with almost any micro-
scope, USB capillaroscope or any 
compatible camera and uploading 
the captured information to our 
database.

•	 Several tools and processes for 
dataset preparation, necessary for 
training and testing the different 
deep-learning models.

The software and its database (CAPI-
DATA) have been approved by the 
regionals ethics committee (Aragon, 
Spain).

Pipeline of deep-learning models
Our current inference pipeline is 
composed of several models, each 
one with a different purpose:
1. A first-phase model that is respon-

sible for locating and counting 
capillaries and haemorrhages, and 
classifying capillaries into normal, 
tortuous and ramified capillaries. 
This model has also been trained 
to detect giant capillaries as a sep-
arate category, since some of them 
have tortuous shape but have been 
labelled as giant capillaries due to 
their large size.

2. A second-phase model that is re-
sponsible for producing measure-
ments of each capillary detected by 
the first model. Currently, this mod-
el produces measurements for the 
apical diameter and each capillary 
arterial and venous limbs’ width. 
When a physical size calibration 
is available for the image, these 
measurements are used in order to 
determine whether a capillary is en-
larged or giant/megacapillary.

3. An auxiliary model that is responsi-
ble for deciding, solely based on the 
visual aspect of the capillary, what 
capillaries of an image, if any, are 
enlarged/giant. This model is useful 
only when there is no physical size 
calibration available for an image 
and therefore the measurements of 
the second-phase model cannot be 
used to produce a better decision.

When apical diameter [also called 
capillary loop diameter (11)] and cap-
illary limbs measurements are used, 
EULAR criteria described in Smith 
et al. (12) is followed, considering 
a capillary normal when its apical 
diameter length is below 20 μm, en-
larged when it’s between 20 μm and 
50 μm and giant/megacapillary when 
it’s over 50 μm. The same is done for 
arterial and venous limbs’ width.
Most of the time our second-phase 
model produces all 3 measurements, 
but sometimes it will fail to produce 
some or all of the measurements 
due to bad capillary visibility or not 
enough model confidence. When no 
measurements are produced, the auxil-
iary model will be used for normal, en-
larged or giant classification instead.
Our first-phase and auxiliary models 
are object detection models (13), they 
detect and classify all capillaries of an 
image in a single pass. Meanwhile, the 
second-phase model is a key-point de-
tection model. It outputs the start and 
end points of each capillary measure-
ment for a single capillary each time. 
This means that the capillaries detect-
ed on the first-phase are cropped from 
the original image and run through the 
key-point detection model.
When combined, these models pro-
duce a detailed analysis of a single 
nailfold capillaroscopy image (Fig. 1).

Dataset preparation
In order to make our deep learning 
models work with nailfold capil-
laroscopy images of varying origin, 
quality and magnification level, we 
commenced gathering a dataset of 
images provided by several collabo-
rators and authors of this paper.
We made sure that our dataset im-
ages had been obtained with several 
traditional microscope models and a 
mounted camera, but also many de-
vices designed for capillaroscopy ex-
aminations, mainly Dino-Lite Capil-
laryScope, Optilia Digital Capillaro-
scope, and Smart G-Scope.
The dataset is comprised mostly of  
images at 200x magnification level, 
but it also includes images at higher 
magnification levels (200-500x) and 
slightly lower magnification levels.
Based on this approach we iterated 
on incremental versions of the dataset 
until the most recent version formed 
by 2,713 images, all of them manually 
annotated and carefully validated.
This dataset is composed of several 
collections of capillaroscopic images 
of patients with Raynaud’s phenom-
enon (primary and secondary) from 
nine different Spanish tertiary hospi-
tals.
Of this dataset, we kept apart 15% of 
images for testing the model perfor-
mance.

Detection of capillaries 
and haemorrhages
LabelImg (14) software was used to 
start manually labelling all images in 
a first and very limited version of our 
final dataset. The following bound-
ing box annotations were marked 
on each image: normal capillaries, 
tortuous capillaries, ramifications, 
haemorrhages and mega- capillaries. 
For each normal, tortuous capillary 
or ramification it was also annotated 
whether that example was enlarged or 
not.
Some initial object detection models 
were trained with the first annotated 
dataset. Given that the obtained re-
sults were promising, we implement-
ed a basic version of our image view-
er software that made it possible to 
upload capillaroscopy images, ana-
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lyse them and also edit the generated 
annotations by the software or create 
new annotations.
At this point we switched to using 
our own software as a reliable da-
tabase of images for annotation and 
validation of capillaries, adding the 
possibility for each person to com-
ment on each image and mark it as 
validated or not, while keeping a vis-
ual and interactive log of each action 
that was done with any image. This 
ad hoc user interface made it easier 
for us to track changes of annotations 
in images, track done and remaining 
images and collaborate on the crea-
tion of a larger dataset. It also made 
it very simple for our collaborators to 
upload their images and explore what 
was already uploaded.

Measurement of capillaries
Our first inference pipeline did not 
include the key-point detection mod-
el that we now use for measuring 
capillaries apical diameter and limbs 
width. It classified capillaries as en-
larged/giant based only on their ap-
pearance. Relying only on the visual 
aspect of capillaries is very error-
prone, so we reconsidered the image 
analysis strategy and decided that it 
was necessary to extend it by adding 
the automated measurements in order 
to improve the objectiveness of the 
whole system.
Using capillaries measurements 
makes the size-based classification of 
capillaries very objective and our cap-

illaroscopy examination report more 
data-driven, which is a main objec-
tive in our work. But, since measur-
ing physical distance is only possible 
with properly calibrated images, the 
existing model was kept as a second-
ary size-based capillary classification 
mechanism.
We directly used our own software 
for building this dataset, first adding 
the possibility to calibrate images, 
use standard calibrations for known 
devices and also create, modify and 
label measurements in all images. We 
stopped measuring and validating im-
ages when we had collected 18,000 
measurements of each type: capillary 
apical diameter, arterial limb width 
and venous limb width.
For measuring capillaries, we trained 
two separate key-point detection mod-
els. The first one measured the apical 
diameter only, and the second one 
took advantage of the apical diameter 
measurement prior to generate meas-
urements for the two capillary limbs. 
To train these models we used a basic 
Graving et al. (15) Stacked DenseNet 
configuration due to its simplicity, 
good performance and fast inference 
speed. Other keypoint detection sys-
tems [Wu et al. (16)] were tested but 
did not produce better results.

Web application
A simple web user interface was de-
signed to allow uploading as many 
images per finger as necessary. For 
all fingers, each uploaded image can 

be marked as belonging to some spe-
cific sector of the nailfold (there are 
four sectors called A, B, C and D, as 
seen in Fig. 2), unknown sector or 
“panoramic” (ABCD). We chose to 
divide the nailfold in four sectors ac-
cording to methodology described in 
Smith et al. (17).
Once the images are uploaded, the 
application analyses them one by one 
and makes the results available in a 
built-in capillaroscopy image viewer.

Image capture application
While the web application is quick 
and simple enough to use (it only 
requires uploading a few photos, op-
tionally indicating the sector of each 
one), manually placing images in 
their correct finger and sector catego-
ry can take some time, assuming the 
physician was careful enough to la-
bel each photo properly while taking 
them with the device vendor software 
for image capture.
In order to facilitate the process of 
correctly taking photos during the 
nailfold capillaroscopy procedure we 
designed a desktop application that 
can function with almost any camera, 
is able to automatically read calibra-
tion data from some known devices 
and offers the possibility to manually 
calibrate other devices as needed.
It is also critical that each one of the 
taken photos includes a precise cali-
bration. Without a proper calibration, 
capillary measurements still can be 
automated, but the physical distance 

Fig. 1. Inference pipeline for one image.
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of each measurement remains un-
known, and therefore unusable for 
size based capillary classification. We 
found that none of the image capture 
applications that are included with 
capillaroscopy devices include any 
useful metadata in the image files 
that they produce: they don’t save 
readable information about how the 
photo was taken such as magnifica-
tion level, physical distance reference 
(calibration) or even the name of the 
used device.
To overcome these problems and 
avoid any human error, all photos 
taken with this application are saved 
with the following information in its 
metadata, that is preserved indepen-
dently of the file name:
- Finger and nailfold sector.
- Magnification level.
- Physical distance reference (man-

ual or automatic calibration).
- Date and time the photo was cap-

tured.
- Camera model name and identifier. 
- Producer software and version.
Photos at very low magnification, for 
example 50x, or even photos taken 
with a dermatoscope are not detailed 
enough to reliably discern capillar-
ies, but they can be useful as a “pano-
ramic” view of the whole nailfold, so 
our software makes it possible to take 
these images, but excludes them from 
the in-detail analysis and report met-
rics that are produced using higher 
magnification images, being 200x-
250x the recommended magnifica-
tion by the software.
Finally, to make the procedure easier, 
the application allows the user to up-
load the images directly to the web 
application in a single click without 
needing to use the web application 
upload form.

Statistical analysis
In order to evaluate the performance 
of our deep learning models, we used 
standardised metrics commonly used 
in object detection and visual infor-
mation retrieval tasks in computer  
vision (18).
These metrics are:
- Precision: The positive predictive 

value. It is defined as the ratio be-
tween correctly detected objects 
(true positives) and the sum of true 
positives and false positives (de-
tected objects that are incorrect or 
not actually present in the image).

- Recall: Sensitivity. It is defined as 
the fraction of relevant objects that 
are successfully detected and clas-
sified.

- IoU: Intersection over union of the 
real object and predicted object 
areas. This is used to determine 
whether two objects are the same 
object or not by evaluating the co-
incidence of their bounding boxes.

- AP and AR: average precision and 
average recall. The precision and 
recall metrics are evaluated at dif-
ferent levels of IoU, starting from 
0.50 (good enough match) and up 
to 0.95 (near perfect match). This 
gives an averaged metric that can 
be used to evaluate the model per-
formance when detecting a type of 
object (for example a capillary).

- mAP: Mean average precision. 
The mean of average precision for 
each type of detected object is cal-
culated as a single summary met-
ric to evaluate the whole model.

For all of these metrics possible val-
ues range from 0 (worst) to 1 (best).

Results
For the two object detection models, 
we prepared a dataset of 2,713 imag-

es of patients with RP, which contain 
annotations for each type of element 
to be detected (see amount of annota-
tions in Table I).

Detection of capillaries 
and haemorrhages
For this model we used the total num-
ber of annotations, merging normal 
and enlarged samples, with the ob-
jective to have the model learn about 
the “shape” of capillaries and haem-
orrhages.
We used a Retinanet (19) configura-
tion of MMDetection machine learning 
framework (20) with some basic data 
augmentation. Using newer and more 
powerful models did not lead to bet-
ter results, probably due to the low 
number of classes in our dataset.
Haemorrhages are difficult to clas-

Fig. 2. Each nailfold is divided into four sectors. ’L’ denotes left hand and ’R’ right hand.

Table I. Amounts of annotations for each 
type of object, total and enlarged.

Type Total Enlarged

Capillary 23,753 9,415
Tortuosity 4,426 2,351
Ramification 640 388
Giant capillary 1,081 —
Haemorrhage 2,100 —

Table II. Metrics for detection of capillaries 
and haemorrhages.

Metric Score

All label types
Average precision (AP) @ IoU=0.50:0.95 0.471
AP @ IoU=0.50 0.758
AP @ IoU=0.75 0.504
Average recall (AR) @IoU=0.50:0.95 0.625

By label types - AP @ IoU=0.50:0.95
Haemorrhage 0.463
Giant capillary 0.524
Ramification 0.279
Tortuosity 0.491
Capillary 0.600
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sify with great precision because the 
bounding boxes of images with many 
adjacent haemorrhages can be la-
belled and counted by humans in very 
different ways. But since the goal is to 
detect the presence of haemorrhages, 
and they don’t need to be measured 
or counted very precisely, we can say 
that the model is able to successfully 
indicate the presence of haemorrhag-
es in capillaroscopy images.

Categories with a high number of 
examples (capillaries in all different 
shapes) can be detected with a high 
recall without great loss in precision. 
See Table II for evaluation metrics of 
this model.

Detection of normal, 
enlarged and giant capillaries
For this model we used all annota-
tions except for haemorrhages (de-
tected by the first model), with the 
objective to have the model learn 
about the “size” of capillaries and 
classify them as normal, enlarged 
or giant. See Table III for evaluation 
metrics of this model.

Precision and recall
When we test the model on the testing 
set, requiring a minimum output con-
fidence of 0.40 and a minimum IoU of 
0.50 we obtain a precision of 83.84%. 
The system was able to recognise 
92.44% of the total number of capil-
laries (Table IV). With the exception 
of the ramifications that present a re-
call and precision slightly above 50%, 
in the rest of the findings the precision 
percentages are in all cases above 
74% with a recall greater than 85%.

Measurement of capillaries
Our training set was formed by 
15,352 manually annotated and vali-
dated capillaries with all three meas-

urements. The test set is formed by 
1,690 capillaries with all three meas-
urements.
In non-blurred capillaries with good 
visibility, where the apex can be ob-
served, our system produced the cor-
rect apex measurement most of the 
time: in 88 % of the test set data when 
model confidence is at least 0.50. 
Limb measurements were also placed 
in a reasonable spot of each limb, 
given that limbs measurements could 
be potentially placed in very different 
sections of the limb. In this case, re-
sults are obtained in 84% of the test 
set examples. Example measurements 
can be observed in Figure 3.

Discussion
Although other classification and 
scoring systems have been published 
for the interpretation of capillaros-
copy (5, 21), we propose a different 
approach based on deep learning that 
can be easily used in any situation or 
with any device.
The metrics in our results not only are 
promising, they prove the system al-
ready useful for capillaroscopy prac-
tice. The system is able to detect and 
count most of the capillaries in any 
NVC. Our object detection models 
achieve a mAP of 0.471 and 0.515. 
Given that state of the art mAP for 
object detection models on very large 
datasets such as COCO (22) (the cur-

Table III. Metrics for detection of capillary 
size (normal/enlarged/giant).

Metric Score

All label types
Average precision (AP) @ IoU=0.50:0.95 0.515
AP @ IoU=0.50:0.95 0.811
AP @ IoU=0.75 0.563
Average recall (AR) @ IoU=0.50:0.95 0.663

By label types - AP @ IoU=0.50:0.95
Enlarged capillary 0.567
Normal capillary 0.453
Giant capillary 0.525

Table IV. Precision and recall with model 
output confidence of 0.40 or more and IoU 
of 0.50 or more.

Type Precision (%) Recall (%)

Capillary 83.84 92.44
Normal capillary 75.94 87.52
Enlarged capillary 75.96 91.59
Megacapillary 74.52 91.4
Tortuosity 74.41 89.46
Ramification 50.70 57.14

Fig. 3. Detected and 
measured capillaries ex-
ample.
The buttons on the right 
are used to modify the 
annotations.
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rent reference challenge in object 
detection research) is 0.557 (23), the 
overall system can be already consid-
ered to be in an advanced state.
All types of detected capillaries in im-
ages had a high precision and recall, 
with worse results for ramifications, 
probably due to the smaller number 
of ramification examples in the data-
set in comparison with the other types 
of capillaries. Nevertheless, mean 
precision was 72% and mean recall 
was 85%, across all classes.
Also, by having capillary measure-
ments, the effective accuracy of the 
system improves as long as a well-
calibrated capillaroscope is available 
(several devices on the market have 
automatic calibration), by being able 
to take advantage of the measurement 
information to correct possible capil-
lary size classification mistakes made 
by the object detection model.
Our software is able to automatically 
count and recognise capillaries in im-
ages obtained with any microscope, 
generate automatic measurements of 
each capillary and take advantage of 
this information resulting in an ex-
haustive analysis that is able to pro-
duce detailed and objective reports 
of each patient that allows the physi-
cian to perform an objective analysis. 
Although other internal and external 
validation studies are necessary, this 
high level of precision and recall al-
lows positioning the tool as a potential 
automatic capillary analysis system.
These automatic quantitative statis-
tics reported by capillary counting 
and measurements will facilitate the 
detection and suggestion of well-
known patterns such as scleroder-
miform patterns classified into early, 
active or late patterns according to 
Smith et al. (3).
In conclusion, a simple, easy to use 
web-based system to manage and 
analyse nailfold capillaroscopy im-
ages has been created using current 
methods in deep learning. It may be 
a very useful tool to standardise the 
collection and interpretation of capil-
laroscopy pictures and could provide 
great research in that field.
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