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Abstract
Objective

To compare machine learning (ML) to traditional models to predict radiographic progression in patients with 
early axial spondyloarthritis (axSpA).

Methods
We carried out a prospective French multicentric DESIR cohort study with 5 years of follow-up that included 
patients with chronic back pain for <3 years, suggestive of axSpA. Radiographic progression was defined as 

progression at the spine (increase of at least 1 point of mSASSS scores/2 years) or at the sacroiliac joint 
(worsening of at least one grade of the mNY score between 2 visits). Statistical analyses were based on patients 

without any missing data regarding the outcome and variables of interest (295 patients). 
Traditional modelling: we performed a multivariate logistic regression model (M1); then variable selection with 
stepwise selection based on Akaike Information Criterion (stepAIC) method (M2), and Least Absolute Shrinkage 

and Selection Operator (LASSO) method (M3). 
ML modelling: using “SuperLearner” package on R, we modelled radiographic progression with stepAIC, 

LASSO, random forest, Discrete Bayesian Additive Regression Trees Samplers (DBARTS), Generalized Additive 
Models (GAM), multivariate adaptive polynomial spline regression (polymars), Recursive Partitioning And 

Regression Trees (RPART) and Super Learner. Accuracy of these models was compared based on their 10-fold
 cross-validated AUC (cv-AUC).

Results
10-fold cv-AUC for traditional models were 0.79 and 0.78 for M2 and M3, respectively. The three best models in the 
ML algorithms were the GAM, the DBARTS and the Super Learner models, with 10-fold cv-AUC of: 0.77, 0.76 and 

0.74, respectively. 

Conclusion
Two traditional models predicted radiographic progression as good as the eight ML models tested in this population. 
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Introduction
Axial spondyloarthritis (axSpA) is a 
chronic multifaceted rheumatic dis-
ease that encompasses various clinical 
presentations, including chronic back 
pain (mostly inflammatory), peripheral 
manifestations such as arthritis, en-
thesitis or dactylitis, and extra-articular 
manifestations such as psoriasis, uvei-
tis or inflammatory bowel disease (1). 
Radiographic progression can also be 
highly variable between patients and 
can occur early in the disease or after 
decades (2-4). Several factors have 
been classically found to be associated 
with a higher radiographic progression 
rate, in particular the appearance of 
syndesmophytes: smoking, HLAB27, 
male gender, young age at diagnosis, 
increased C-reactive protein (CRP), 
higher disease activity, a physically de-
manding job (‘blue-collar’ job), sacro-
iliac joint (SIJ) MRI inflammation, spi-
nal MRI inflammation and structural 
lesions at baseline (syndesmophytes or 
radiographic sacroiliitis) (5-7). 
Predictive factors for radiographic pro-
gression in axSpA have been identi-
fied through use of traditional statisti-
cal models, such as logistic regression 
(3-7). However, these models present 
some limitations, like the need to in-
clude the relevant independent vari-
ables (in order to have a performing 
predictive model) but at the same time 
the limitation of needing a good num-
ber of observations to achieve stable, 
meaningful results: it is generally ac-
cepted that logistic regression needs at 
least 10 cases per independent variable 
in the analysis (8). Finally, having too 
many parameters compared to obser-
vations may lead to overfitting (i.e. 
when a model is excessively complex, 
and reflects too much the sample; such 
model will overreact to minor fluctua-
tions in the sample data, leading to a 
poor predictive performance in other 
data sets) (9).
In order to overcome these limitations 
and to improve the predictive perfor-
mance, machine learning (ML) methods 
have been developed. ML is a subfield 
of artificial intelligence (AI), and com-
bines computer science and mathemat-
ics to develop methods which are able 
to “learn” from experience (data) and 

create predictive and prognostic mod-
els with high accuracy, reliability, and 
efficiency (10). ML can model complex 
relationships between large explanatory 
features and desired outputs. 
These new analytical tools have re-
cently been used in other medical dis-
ciplines, such as the field of oncology, 
neurosurgery and neuro-imaging (11-
12). But to date only few studies have 
applied these models in rheumatology 
and to our best knowledge none aiming 
to predict radiographic progression in 
spondyloarthritis (13-14).
The goal of this study was to compare 
the accuracy of ML algorithms to tra-
ditional models to predict radiograph-
ic progression in patients with early      
axSpA.

Materials and methods
Patients
The Devenir des Spondylarthropathies 
Indifférenciées Récentes (DESIR) co-
hort. DESIR (www.lacohortedesir.fr/
desir-in-english), NCT01648907, is 
a prospective longitudinal cohort in-
volving 25 rheumatology centres in 
France. Participants at the study gave 
their written informed consent. This 
study fulfilled the current Good Clinical 
Practices and has obtained the approval 
of the appropriate ethical committee. 
DESIR’s characteristics have been de-
scribed elsewhere (15), but briefly, 708 
consecutive adult patients (inclusion 
period 2007 to April 2010), aged <50 
years with chronic but early (>3 months 
but <3 years) inflammatory back pain 
(IBP) highly suggestive of SpA accord-
ing to the rheumatologists’ assessment 
(score ≥5 on a Numerical Rating Scale 
(NRS) of 0–10 where 0 = not sugges-
tive and 10 = very suggestive of SpA) 
were included. Visits were scheduled 
every 6 months for the first 2 years and 
yearly thereafter. A 15-year follow-up 
is currently ongoing, but the present 
analysis focuses on the first 5 years of 
follow-up. Among these patients, we 
analysed the data of patients with no 
missing data regarding the outcome and 
the variable of interest (see below).

Patient and public involvement
Patients were not involved in the de-
sign of this study.
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Data collected
Variables collected at each DESIR co-
hort visit have already been described 
elsewhere (15): patients’ characteris-
tics (age, sex, socio-demographic fea-
tures, smoking status, employment), 
SpA clinical features (date of disease 
onset, peripheral involvement, en-
thesitis), disease activity (BASDAI, 
ASDAS and CRP (mg/L)) and sever-
ity (BASFI), and local reading imaging 
(radiographic sacroiliitis, MRI sacro-
iliitis) were collected at baseline and 
at each DESIR visit according to the 
study protocol (detailed protocol and 
collected variables information avail-
able online at www.lacohortedesir.fr/
desir-in-english). In addition, all im-
ages for baseline, 2 and 5 years were 
centrally read by 3 readers per modal-
ity (for details see below), who were 
blinded for time of acquisition of the 
images and clinical information. For 
each imaging modality, scores from 
readers were combined: for continu-
ous outcomes the mean of the available 
readers was calculated; for binary out-
comes the score agreed by 2 out of the 
3 readers was retained. The database 
used for the analyses was locked in 
June 2018.

Radiographic scores
- mSASSS
Radiographic damage of the spine was 
assessed by the mSASSS score (16), 
that ranges from 0 to 72. It has previ-
ously been shown that this score was 
useful and reliable for assessing radio-
graphic damage in spondyloarthritis and 
for detecting changes over time (17).

- mNY
Radiographic damage of the SIJ was 
assessed by the modified New York 
(mNY) scoring system. According to 
this scoring method, the reader must 
score each sacroiliac joint from 0 to 4 
(0 = no disease, 1 = suspicious for sac-
roiliitis, 2 = small localised areas with 
erosions or sclerosis without alteration 
in joint width, 3 = moderate/advanced 
sacroiliitis with one or more of ero-
sions, evidence of sclerosis, widening, 
narrowing or partial ankylosis; 4 = to-
tal ankylosis (18). The final score (per 
SIJ) ranges from 0 to 4. A total SIJ ra-

diographic score per individual can be 
calculated, which ranges from 0 to 8. 
The mNY criteria (binary criteria) are 
fulfilled at the individual level (i.e. for 
2 SIJ) if there is at least a grade 2 bilat-
erally or a unilateral grade 3 or 4 (18).

Definitions
- Radiographic progression
Spine: radiographic progression at the 
spine was defined as the increase of at 
least 1 mSASSS unit per 2 years as it is 
clinically relevant (3-4, 19).
Sacroiliac joints: radiographic progres-
sion of the SIJ was defined as the in-
crease of at least one grade of the mNY 
score (continuous variable) between 2 
visits (visits at baseline, 2y and 5y), ac-
cording to the mNY scoring method, ex-
cept from an increase from 0 to 1, which 
was not considered significant (5).
Patients were defined as “progressors” if 
presenting at 5 years with radiographic 
progression either at the SIJ or the spine. 

Statistical analysis
All analyses were performed on R, v. 
3.6.0. First, we performed a bivariate 
analysis between radiographic progres-
sion and variables collected at baseline 
that have been classically reported to be 
relevant for radiographic progression in 
the literature (See Supplementary Table 
S1). For quantitative variables, Student 
t-test and Mann-Whitney/Wilcoxon test 
were used as appropriate (20-21). For 
binary variables, Chi-Square and Fish-
er’s test were used as appropriate (22). 
For non-binary categorical variables, 
Fisher’s test was used.

- Traditional models
We performed a multiple logistic re-
gression to predict radiographic pro-
gression (M1 model). All variables 
with a p<0.4 in the bivariate analysis 
were included in the model (23). Then, 
two different methods to select the var-
iables were applied:
-  stepwise selection based on the AIC 

(step AIC (AIC: Akaike Information 
Criterion)) method, backward and 
forward: basically, step AIC respec-
tively removes or add variables in the 
model until getting the model with 
the best (the lowest) AIC in a back-
ward or forward way (24): M2 model;

- LASSO (Least Absolute Shrinkage 
and Selection Operator) method: 
LASSO method penalises the likeli-
hood of the model in order to force 
certain regression coefficients to be 
set to zero. It has been developed no-
tably to handle overfitting (25): M3 
model.

For each model, we calculated the 10-
fold cross-validated Area Under the 
Curve (10-fold cv-AUC) (26), using 
the R packages “pROC”, “cvAUC” 
and “caret” (27).

ML approach
ML algorithms are usually character-
ised according to different paremeters: 
parametric versus non-parametric, su-
pervised versus unsupervised, unique 
versus ensemble algorithms. The Super 
Learner (SL) is a supervised ensemble 
of ML algorithms using simultaneously 
parametric and non-parametric meth-
ods (28), and can be used for selecting 
the optimal prediction algorithm among 
a set of candidate algorithms via k-fold 
cross-validation (29). Moreover, it can 
further capitalise on the performance of 
all candidate algorithms included in its 
library building an aggregate algorithm 
defined as an optimal weighted combi-
nation of all candidate algorithms. In 
practice, candidate algorithms in the 
SL library were trained and ranked ac-
cording to their average estimated risk 
and the algorithm with the least aver-
age estimated risk was identified. We 
defined the following library of ML 
models: step AIC, LASSO, Random 
forest (an ensemble learning method for 
classification, among the most used ML 
methods; they operate by constructing 
a multitude of decision trees at training 
time and outputting the class that is the 
mode of the classes (classification) of 
the individual trees (30-32)), Discrete 
Bayesian Additive Regression Trees 
Samplers (DBARTS, which creates a 
sampler object fitting a Bayesian Ad-
ditive Regression Tree (BART) model, 
which is a Bayesian “sum-of-trees” 
model in which each tree is constrained 
by a prior to be a weak learner; it is a 
nonparametric regression approach de-
fined by a statistical model (a priori and 
a likelihood) that uses dimensionally 
adaptive random basis elements, and 
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it can be used for model-free variable 
selection (33)), Generalized Additive 
Models (GAM, statistical models in 
which the usual linear relationship be-
tween the response and predictors are 
replaced by several non-linear smooth 
functions to model and capture the non-
linearities in the data (34-35)), multi-
variate adaptive polynomial spline re-
gression (polymars, a non-parametric 
regression analysis technique (like an 
extension of linear models) that auto-
matically models nonlinearities and in-
teractions between variables (36-37)), 
Recursive Partitioning And Regression 
Trees (RPART, which can build regres-
sion models of a very general structure 
using a two-stage procedure: first the 
single variable which best splits the data 
into two groups is found. The data is 
separated, and then this process is ap-
plied separately to each sub-group, and 
so on recursively until the subgroups 
either reach a minimum size or until no 
improvement can be made. The second 
stage of the procedure consists of using 
cross-validation to trim back the full 
tree. Finally, the resulting models can be 
represented as binary trees (12, 30-31). 
A comparison of 10-fold cross-validat-
ed AUC of different models at the same 
time is performed by SL (31). Finally, 
the SL is a unique combination of the 
different ML models, automatically 
computed by the statistical package 
(“SuperLearner” R package) (28-31).
Finally, traditional and ML models were 
compared by their 10-fold cross-val-
idated AUC, which is currently one of 
the most popular discrimination indexes 
(38-39). We also calculated for each 
model: the Brier score and the Hosmer-
Lemeshow goodness of fit (40–42). 

Handling of missing data
All these models were performed only 
on the population without any missing 
data on the outcome or on the variables 
of interest. 
We performed a sensitivity analysis 
based on all patients after multiple im-
putation of all missing data by chained 
equations using “MICE” package on R 
which takes into account all informa-
tion available for each patient to im-
pute missing data on the other variables 
(43). We imputed 60 data sets with 500 

iterations and made a sensitivity analy-
sis with a manual backward method 
(M4 model).

Results
Description and bivariate analyses
Baseline characteristics of patients 
from the DESIR cohort have previous-
ly been described (29), and the data of 
the 295 patients with no missing data 
regarding the outcome and the vari-
ables of interest (see below) are sum-
marised in Table I. 
Among the 295 patients included, 88 
(29.8%) were considered as progres-
sors according to our definition. Among 
the progressors: 46 (52.3%) were pro-
gressors at the spine level, 33 (37.5%) 
at the SIJ level, and 22 (25.0%) at both 

the spine and SIJ. All further analyses 
are based on these 295 patients.
The bivariate analyses evaluating the 
level of association between radio-
graphic progression and each potential 
baseline variable of interest retained the 
following variables: age, gender, smok-
ing status, profession (white collar vs. 
blue collar job), history of enthesitis, 
history of dactylitis, CRP, number of 
painful entheses, mNY criteria, mNY 
score, mSASSS score, MRI sacroiliitis, 
MRI SIJ SPondyloArthritis Research 
Consortium of Canada (SPARCC) score 
and MRI Spine SPARCC score.

Traditional models
- Logistic regression model
We performed a regression logistic 

Table I. Baseline characteristics of patients included in the analysis (e.g. with no missing 
data on the outcome).

 All included Non  Progressors p-value
 patients progressors n=88
 n=295 n=207  

General characteristics    
Age, mean (SD) 34.5  (6.8) 34.1  35.3  0.272
Women, n (%) 148  (50.2%) 112  (54.1%) 36  (40.1%) 0.053
BMI, mean (SD) 24.2  (3.3) 24.1    24.5  0.708
Current smoker, n (%) 110  (37.3%) 66  (31.9%) 43  (48.9%) <0.001
Profession: blue-collar job, n (%) 30  (10.2%) 17  (8.2%) 13  (14.8%) 0.112
Past history information    
    HLA B27 positive, n (%) 188  (63.7%) 133  (64.3%) 55  (62.5%) 0.521
    Past history of enthesitis, n (%) 173  (58.6%) 128  (61.8%) 45  (51.1%) 0.053
    Past history of dactylitis, n (%) 40  (13.6%) 31  (15.0%) 9  (10.2%) 0.141
    Past history of arthritis, n (%) 82  (27.8) 59  (28.5%) 23  (26.1%) 0.508
    Uveitis, n (%) 24  (8.1%) 15  (7.2%) 9  (10.2%) 0.419
    Inflammatory bowel disease, n (%) 15  (5.1%) 11  (5.3%) 4  (4.5%) 0.826
    Psoriasis, n (%) 53  (18.0%) 38  (18.4%) 15  (17.0%) 0.977
Disease activity and function    
    BASDAI score, mean (SD) 44.0  (18.8) 44.3  43.2  0.467
    ASDAS-CRP score, mean (SD) 2.5  (0.8) 2.4  2.7  0.441
    CRP, mean (SD) 8.2  (12.9) 7.6  9.6  0.211
    Number of painful entheses, mean (SD) 4.1  (5.0) 3.9  4.6  0.205
    BASFI, mean (SD) 29.7  (21.3) 29.4  30.5  0.686
Radiographic status    
    Local reading positive mNY criteria, 58  (19.7%) 25  (12.1%) 33  (37.5%) <0.001 
    n (%) 
    Central reading positive mNY  44  (14.9%) 15  (7.2%) 29  (33.0%) <0.001
    criteria, n (%) 
    mNY score, mean (SD) 1.0  (1.2) 0.6  2.1  <0.001
    mSASSS score, mean (SD) 0.53  (1.1) 0.2  1.3  <0.001
    MRI sacroiliitis, n (%) 112  (38.0%) 66  (31.9%) 46  (52.3%) <0.001
    MRI SIJ SPARCC score, mean (SD) 3.2  (6.0) 2.3  5.3  <0.001
    MRI Spine SPARCC score, mean (SD) 2.6  (6.1) 1.4  5.4  <0.001
Treatments    
 NSAIDs consumption, n (%) 277  (93.9%) 198  (95.7%) 79  (89.8%) 0.662
 Responsiveness to NSAID 261  (88.5%) 185  (89.4%) 76  (86.4%) 0.748

BMI: Body Mass Index; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; ASDAS: 
Ankylosing Spondylitis Disease Activity Score; CRP: C-reactive protein; BASFI: Bath Ankylosing 
Spondylitis Functional Index; mSASSS: modified Stoke Ankylosing Spondylitis Spinal Score; mNY: 
modified New-York; MRI: magnetic resonance imaging; NSAID: non-steroidal anti-inflammatory 
drug; SPARCC: SPondyloArthritis Research Consortium of Canada.
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model, to explain the outcome of radio-
graphic progression, with the 14 selected 
variables. Odds ratio (OR) and p-values 
are given Table II. In this model (M1), 
4 variables were significantly associated 
with radiographic progression: smoking 
status (OR (IC95%)=1.94 (1.05–3.56), 
p=0.03), number of painful entheses on 
clinical examination (OR (IC95%)=1.07 
(1.01–1.14), p=0.02, mNY score (OR 
per point (IC95%)=2.14 (1.44–3.25), 
p<0.001), mSASSS score (OR per point 
(IC95%)=1.48 (1.14–1.99), p=0.006). 
The 10-fold cross-validated AUC was 
0.75. Brier score was 0.172 and Hos-
mer-Lemeshow goodness of fit was 
p=0.65.

- StepAIC method
First, we used the stepAIC method, 
which selected 4 variables in the final 
model (M2): smoking status, number 
of painful entheses on clinical exami-
nation, mNY score, mSASSS score. 
For this model the 10-fold cross-vali-
dated AUC was 0.79, Brier score was 
0.160 and Hosmer-Lemeshow good-
ness of fit was p=0.13.

- LASSO method
After applying LASSO, 10 variables 
were removed from M1. The 5 remain-
ing variables were the same as in M2 
model (smoking status, number of pain-
ful entheses on clinical examination, 

mNY score and mSASSS score) along-
side with age. The final model (M3)’s 
10-fold cross-validated AUC was 0.78. 
Brier score was 0.159 and Hosmer-
Lemeshow goodness of fit was p=0.35.

- Sensitivity analysis: manual 
  backward method after multiple 
  imputation of missing data
After applying manual backward se-
lection of variables on the whole popu-
lation (after multiple imputation of 
missing data), we got a model (M4) 
that had only 3 explanatory variables: 
mNY score, mSASSS score, MRI SIJ 
SPARCC score. For this model, 10-
fold cross-validated AUC was 0.75, 
Brier score was 0.168 and Hosmer-
Lemeshow goodness of fit was p=0.63.
Two variables were consistently found 
in all traditional models: baseline mNY 
score and mSASSS score. The most 
accurate traditional model was the M2 
model (obtained with stepAIC meth-
od). Indeed, it had the highest 10-fold 
cross-validated AUC and the lowest 
AIC. Detailed traditional models are 
presented in Supplementary Table S2.

Machine Learning approach
The GAM, the DBARTS and the Super 
Learner models were the most accurate 
models with 10-fold cv-AUC of: 0.77, 
0.76 and 0.74, respectively (Table III).

Comparison between traditional 
models and ML approach
The accuracy of the traditional models 
was compared to ML approach, based 
on 10-fold cross-validated AUC (Table 
III and Fig. 1). The two best traditional 
performing models were the M2 model 
(stepAIC method) with a cross-vali-
dated AUC of 0.79 and the M3 model 
(LASSO method) with a cross-validat-
ed AUC of 0.78. The two best models 
from ML approach gave comparable 
results: the GAM with a cross-validat-
ed AUC of 0.77 and the DBARTS with 
a cross-validated AUC of 0.76.

Discussion
Our analyses showed similar accuracy 
for traditional models (best cv-AUC 
= 0.79) compared to ML models (best 
cv-AUC = 0.77) in the DESIR cohort. 
Among the ML methods with the best 

Table II. Multiple regression logistic model (M1 model).

Patient characteristics p-value OR (CI 95%)

    Age 0.229 1.02 (0.99 – 1.06)
    Gender 0.680 1.15 (0.58 – 2.29)
    Smoking status 0.033 1.94 (1.05 – 3.56)
    Profession 0.682 1.24 (0.44 – 3.39)
Disease general characteristics  
    History of enthesitis 0.226 0.68 (0.36 – 1.27)
    History of dactylitis 0.775 0.87 (0.32 – 2.15)
Disease activity  
    CRP 0.603 1.01 (0.98 – 1.03)
    Number of painful entheses 0.020 1.07 (1.01 – 1.14)
Imaging  
    mNY score <0.001 2.14 (1.44 – 3.25)
    mSASSS score 0.006 1.48 (1.14 – 1.99)
    Local reading mNY criteria  0.883 0.93 (0.35 – 2.36)
    Central reading mNY criteria  0.227 0.42 (0.10 – 1.70)
    MRI sacroiliitis 0.569 1.24 (0.58 – 2.60)
    MRI SIJ SPARCC score  0.866 1.00 (0.95 – 1.06)
    MRI Spine SPARCC score 0.116 0.96 (0.91 – 1.02)

OR: Odds ratio; CI95%: 95% confidence intervals; CRP: C-reactive protein; mNY: modified New-
York; MRI: magnetic resonance imaging; NY: New-York, mSASSS: modified Stoke Ankylosing Spon-
dylitis Spinal Score; SPARCC: SpondyloArthritis Research Consortium of Canada. n=295.

Table III. Comparison of 10-fold cross-validated AUC between traditional and machine 
learning models.

Models Cross-validated AUC

Traditional models 
    M2 (step AIC method) 0.79
    M3 (LASSO method) 0.78
Machine learning approach 
    SL Discrete Bayesian Additive Regression Trees Samplers (DBARTS) 0.76
    SL Generalized Additive Models (GAM) 0.77
    SuperLearner (SL) 0.74
    SL LASSO 0.73
    SL Random Forest 0.71
    SL stepAIC 0.69
    SL Multivariate adaptive polynomial spline regression (polymars) 0.68
    SL Recursive Partitioning And Regression Trees (RPART) 0.62

AUC: area under the curve; AIC: Akaike information criterion; LASSO: least absolute shrinkage and 
selection Operator; SL: SuperLearner. n=295.
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accuracy were DBARTS and GAM. 
It is worth noting that prediction was 
very accurate with our traditional mod-
els and ML techniques, as cv-AUC of 
our four best models were >0.75.
Our study has some strengths. First, 
our analyses are based on the DESIR 
cohort which is the largest early axSpA 
cohort with extensive and longitudi-
nal clinical and imaging data collec-
tion over 5 years (15). Besides, to the 
best of our knowledge, this is the first 
analysis aiming at comparing machine 
learning modelling to traditional mod-
els to evaluate radiographic progres-
sion in early axSpA. 
Our study has some limits too. First, 
we did not confirm our hypothesis, i.e.  
that machine learning models would be 
more accurate than traditional models 
as suggested in some previous studies 
(10-12, 44). For instance, Jochems et 
al. were able to get a better AUC with 
machine learning random forest ap-
proach (AUC = 0.66 (95%CI: 0.54–
0.77) compared to a traditional model 
(AUC = 0.55 (95%CI = 0.46–0.63)) for 
death prediction following radiothera-
py in non-small cell lung cancer (11). 
In a systematic review on neurosurgi-
cal outcome prediction, Senders et al 
were able to show an improvement in 
AUC of 0.06 with ML compared to tra-
ditional logistic regression (12). 
Another limit is that we decided to fo-
cus only on patients who would qualify 
as ‘completers’ for this analysis and 
who did not have any missing data 
on the variables of interest, resulting 
in 295 out of 708 patients. Neverthe-
less, when we performed our sensitiv-

ity analysis based on backward method 
after multiple imputations, results were 
comparable to those obtained with 
the 2 traditional models (stepAIC and 
LASSO), with the same two consistent 
predictive variables (mNY and mSASS 
at baseline). 
Recently, ML has gained popularity but 
its definition is still a matter of debate 
and varies according to studies (45-
46). It has been claimed that owing to 
its flexibility, ML would perform better 
than traditional statistical models (45-
46). However, in 2019, a systematic 
review by Christodoulou et al. showed 
no advantage of machine learning over 
logistic regression for clinical predic-
tion models, based on AUC, when com-
parisons had low risk of bias (45). The 
main advantage of ML might be that it 
can handle a huge amount of predictors 
but one of its pitfalls is that it probably 
needs more data than traditional mod-
els (45, 47-48). Indeed, it was shown in 
2014 that some ML methods needed at 
least 10 times more events per variable 
than logistic regression (48). Further-
more another limit, regarding “Super-
Learner” package on R, is that it is a 
“black box” algorithm making it very 
difficult for the user to fully understand 
the contribution of each covariate (49).
Our traditional and ML gave models 
gave similar results and seem to accu-
rately predict radiographic progression 
in these early axSpA patients, mainly 
by the presence of radiographic chang-
es at baseline. Other studies involving 
other kind of data or other artificial in-
telligence methods (i.e. deep learning) 
might be necessary to obtain more ac-

curate estimates of radiographic pro-
gression in early axSpA, particularly 
in the subgroup of patient without any 
radiographic involvement at baseline. 
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