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Abstract
Objective

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Its diagnosis poses significant challenges 
especially at early stages and in atypical cases. The aim of this study was to develop a machine learning model based 

on common laboratory tests that can aid SLE diagnosis.

Methods
A standard protocol was developed to collect data of SLE and control immune diseases. A 10-fold cross-validation was 
performed in the modeling dataset (n=862), and an external dataset (n=198) was used for model validation. Machine 

learning algorithms were applied to construct a diagnostic model. Performance was evaluated based on area under the 
curve (AUC) values, F1-score, negative predictive value, positive predictive value, accuracy, sensitivity, and specificity.

Results
The optimal model was based on a random forest algorithm with 10 clinical features. Thrombin time, prothrombin 

activity, and uric acid contributed most to the diagnostic model. The SLE diagnostic model showed sufficient 
predictive accuracy, with AUC values of 0.8286 in the validation dataset.

Conclusion
Our diagnostic model based on 10 common laboratory tests identified the patients with SLE with high accuracy. 

An online version of the model can potentially be applied in clinical settings for the differential diagnosis of SLE.
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Introduction
Systemic lupus erythematosus (SLE) is 
a complex autoimmune disease that can 
cause inflammation and injury in multi-
ple organs, including skin, kidney, joints, 
nervous system, and blood elements (1). 
The active damage in the tissues and or-
gans of patients with early SLE can be 
reversed by treatment, whereas chronic 
damage is often irreversible. Therefore, 
early diagnosis is an important factor 
that determines the prognosis of SLE 
(2). However, in clinical practice, SLE 
manifestations are extremely hetero-
geneous and multiple laboratory tests 
are needed for its diagnosis (3). Stud-
ies have found that patients with SLE 
often present with leukopenia, lympho-
penia, and thrombocytopenia, with no 
features of musculoskeletal, skin, or 
other system involvement (4). Although 
anti-dsDNA and anti-Sm antibodies are 
specific markers of SLE, many patients 
with SLE lack these antibodies (5). To 
date, only a few biomarkers for SLE 
have been validated and used in clini-
cal practice. The lack of pathognomonic 
features or tests poses a considerable 
challenge in SLE diagnosis (6). More-
over, professional equipment for detect-
ing specific antibodies and complement 
is often not available in many medical 
institutions in China, including health-
care centers, community hospitals, and 
even some municipal hospitals. As a 
result, SLE diagnosis often relies on 
the acumen of physicians and requires 
a great deal of clinical experience when 
faced with complex clinical manifesta-
tions and limited laboratory results. In 
primary hospitals, the diagnosis of SLE 
may be delayed or initially missed if 
the index of suspicion is low. The 1997 
American College of Rheumatology 
(ACR) criteria, the 2012 Systemic Lu-
pus International Collaborating Clinics 
(SLICC) classification criteria, and the 
European League Against Rheumatism/
American College of Rheumatology 
(EULAR/ACR) 2019 classification cri-
teria are commonly used as diagnostic 
aids for SLE (7-9). Besides specific 
manifestations, the classification crite-
ria include laboratory indexes that play 
critical roles in the diagnosis of SLE, 
including leukopenia, lymphopenia, 
thrombocytopenia, urine protein, patho-

logical cast, and serum-specific anti-
bodies. However, these criteria are not 
weighted for specificity, sensitivity, or 
disease severity, and therefore might ex-
clude patients with early or limited SLE 
(10). A more efficient diagnostic tool is 
urgently required, particularly for dif-
ferential diagnosis of suspected cases.
The use of big data in medicine has at-
tracted growing and enthusiastic sup-
port in recent years (11). Machine learn-
ing (ML) has been widely applied in the 
medical field for disease diagnosis (12, 
13), prediction (14, 15), and image rec-
ognition (16). These studies have shown 
that ML can assist clinicians in disease 
diagnosis by, for example, reducing 
the influence of subjective factors in 
the diagnosis process and improving 
the diagnostic efficiency by integrating 
clinical data. ML models have shown 
excellent pattern-recognising capability 
in the rheumatic immunology field, in-
cluding SLE, and most of these models 
used complex clinical and laboratorial 
data as variables to diagnose SLE (17). 
Ma et al. (18) utilised the information 
From B cells and monocytes and es-
tablished a ML model to distinguish 
SLE patients from healthy donors via 
not only scRNA-seq data but also bulk 
RNA-seq data. Cai et al. (19) employed 
deep learning to distinguish patients 
with SLE by skin imaging examination. 
Building robust ML models that avoid 
excessive complexity is still an impor-
tant challenge. Although the increasing 
numbers of laboratory tests have played 
important roles in understanding SLE, 
there are still many laboratory tests that 
have not been adequately addressed. 
Lao et al. (20) showed that the neu-
trophil-to-lymphocyte ratio, red blood 
cell distribution width, and platelet-to-
lymphocyte ratio were feature param-
eters that distinguished patients with 
SLE from healthy controls. Yang et al. 
(21) found that serum urea, creatinine, 
and uric acid were associated with skin 
rash, arthritis, erythrocytopenia, and 
thrombocytopenia in patients with SLE. 
However, the association between these 
clinically accessible markers and SLE 
remains unclear.
In this study, we developed an online 
diagnostic model based on ML methods 
using a new dataset in the Chinese pop-
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ulation to predict the patients at a high 
risk of SLE. The aim was to improve 
the diagnostic efficiency of SLE using 
objectively and accessible laboratory 
indexes, expand the capability of devel-
oping SLE diagnosis based on objective 
indicators, and eliminate the depend-
ence on subjective clinical experience.

Materials and methods
Study population
We conducted a single-centre, retro-
spective study using the Laboratory 
Information System (LIS) database and 
Electronic Medical Records (EMR) 
database from Peking University First 
Hospital. We included patients diag-
nosed at Peking University First Hos-
pital during 2008 and 2016 with SLE or 
miscellaneous control immune diseases 
that are relevant to the differential di-
agnosis of lupus. The disease control 
groups included patients with sicca syn-
drome, scleroderma, connective tissue 
diseases, vasculitis, antiphospholipid 
syndrome, antiphospholipid syndrome, 
dermatomyositis, Epstein-Barr virus 
infections, Hepatitis C infections, fibro-
myalgia, autoimmune haemolytic anae-
mia, and idiopathic thrombocytopenic 
purpura. Patients with SLE were identi-

fied according to the 1997 ACR crite-
ria, 2012 SLICC classification criteria 
or 2019 EULAR/ACR classification 
criteria. The exclusion criteria were: 1) 
patients younger than 18 years old; 2) 
patients who were pregnant; 3) patients 
with two or more autoimmune diseases, 
such as patients with SLE and Sjögren’s 
syndrome, scleroderma, antiphospho-
lipid syndrome, rheumatoid arthritis, or 
connective tissue diseases, 4) patients 
with severe diseases including chronic 
cardiac insufficiency and liver diseases. 
According to the above inclusion and 
exclusion criteria, 1875 patients were 
selected from our hospital, among 
which 432 were patients with SLE and 
1443 patients were patients with other 
immune diseases. Ultimately, a total of 
432 SLE patients and 430 disease con-
trols were included based on 1:1 pro-
pensity score matching (PSM) based on 
gender and age. An external test dataset 
was also collected of patients diagnosed 
at the Peking University First Hospital 
between 2017 and 2018 with SLE or 
control diseases to evaluate the perfor-
mance of the ML model. This study was 
reviewed and approved by the Institu-
tional Ethical Committee Board of Pe-
king University First Hospital.

Data collection
The clinical parameters extracted from 
the LIS database and EMR database 
included demographic information, dis-
ease diagnoses, procedures (coded us-
ing ICD-10-CM) and laboratory tests. 
Baseline clinical and biochemical char-
acteristics of patients were collected at 
their first visit. The extracted risk fac-
tors included: 1) immunology indexes, 
such as the immunoglobulins IgA, IgG 
and IgM; 2) haematologic indexes, 
such as white blood cell count, mean 
corpuscular haemoglobin concentration 
(MCHC), lymphocyte count, thrombin 
time (TT), prothrombin time (PT); and 
3) biochemical indexes, such as 24-
hour urine protein, uric acid (UA), urea, 
and lactate dehydrogenase (LDH).

Statistical analysis
A propensity score is a balancing score 
that can be used to account for the sys-
tematic differences between the expo-
sure and control groups in an observa-
tional study. The PSM is applied so that 
the research subjects are comparable in 
clinical indicators for the purpose of 
balancing covariates and reducing bias. 
This method estimates the propensity 
score for each object with ranges of be-

Fig. 1. A workflow to develop the SLE diagnostic model. 
AUC: area under curve; NPV: negative predictive value; PPV: positive predictive value; ROC: receiver operating characteristic; SLE: systemic lupus erythematosus.
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Table I. Baseline clinical and biochemical characteristics of all patients.

Characteristic SLE cohort  Control diseases cohort p value
 (n=432)  (n=430) 

Age (years), median[IQR] 38 [29,50] 44 [34,49] 0.148

Gender 
   Male 73 (16.9%) 73 (17.0%) 0.975
   Female 359 (83.1%) 357 (83.0%) 

Laboratory test 
Biochemical indexes 
LDH (IU/L), median[IQR] 213.000 [166.000,279.427] 193.194 [155.000,279.000] 0.028*
TP (g/L), median[IQR] 67.300 [60.400,72.900] 68.700 [62.400,74.400] 0.005**
PA (mg/L), median[IQR] 225.000 [160.900,292.800] 216.600 [157.200,284.300] 0.155
Urea (mmol/L), median[IQR] 6.800 [4.840,11.170] 4.930 [3.790,6.800] <0.001***
UA (μmol/L), median[IQR] 354.000 [272.000,456.000] 270.000 [211.000,338.000] <0.001***
TCHO (mmol/L), median[IQR] 4.180 [3.510,5.230] 4.320 [3.770,5.160] 0.154
TBA (μmol/L), median[IQR] 4.100 [2.500,7.620] 4.400 [2.310,8.200] 0.425
TBIL (μmol/L), median[IQR] 9.500 [6.400,13.700] 9.600 [6.800,14.400] 0.407
DBIL (μmol/L), median[IQR] 1.360 [0.560,2.400] 1.207 [0.500,2.450] 0.736
ALP (IU/L), median[IQR] 70.000 [54.000,100.000] 73.000 [56.000,109.000] 0.185
CK (IU/L), median[IQR] 66.543 [41.000,94.000] 63.904 [43.772,103.105] 0.562
PCHE (IU/L), median[IQR] 7183.000 [5408.000,8816.000] 6831.000 [5576.000,8158.000] 0.093
ALT (IU/L), median[IQR] 16.000 [11.000,24.000] 15.000 [11.000,24.000] 0.338
GGT (IU/L), median[IQR] 20.000 [14.000,36.000] 20.000 [13.000,33.000] 0.714
AST (IU/L), median[IQR] 19.000 [15.000,25.185] 20.000 [16.000,25.000] 0.332
Cr (μmol/L), median[IQR] 78.912 [63.000,101.000] 80.000 [64.200,105.000] 0.596
HDL (mmol/L), median[IQR] 1.080 [0.890,1.360] 1.130 [0.900,1.380] 0.243
LDL (mmol/L), median[IQR] 2.560 [2.000,3.380] 2.470 [1.900,2.970] 0.003**
TG (mmol/L), median[IQR] 1.360 [0.950,2.110] 1.390 [0.920,1.990] 0.592
GLU (mmol/L), median[IQR] 5.140 [4.490,6.100] 5.330 [4.680,6.240] 0.007**
CL (mmol/L), median[IQR] 105.100 [102.300,107.600] 104.600 [102.400,107.000] 0.152
Ca (mmol/L), median[IQR] 2.250 [2.130,2.340] 2.240 [2.150,2.340] 0.739
P (mmol/L), median[IQR] 1.140 [1.010,1.330] 1.154 [1.020,1.370] 0.152
Na (mmol/L), median[IQR] 139.590 [137.700,141.460] 139.800 [137.300,141.600] 0.896
K (mmol/L), median[IQR] 3.840 [3.590,4.180] 3.870 [3.580,4.160] 0.908
Mg (mmol/L), median[IQR] 0.880 [0.820,0.950] 0.870 [0.807,0.950] 0.127
CRP (mg/L), median[IQR] 4.060 [1.990,9.664] 5.893 [2.333,16.300] <0.001***

Haematologic indexes 
TT (s), median[IQR] 15.500 [14.700,16.819] 14.607 [13.965,15.533] <0.001***
PT (s), median[IQR] 10.200 [9.600,10.900] 10.800 [10.200,11.800] <0.001***
PTR, median[IQR] 0.990 [0.910,1.060] 1.050 [0.970,1.150] <0.001***
PTA (%), median[IQR] 107.000 [95.000,120.000] 94.000 [84.000,107.000] <0.001***
APTT (s), median[IQR] 31.994 [29.400,34.900] 31.400 [29.200,34.300] 0.378
APTTR, median[IQR] 1.080 [1.000,1.180] 1.070 [0.990,1.170] 0.897
INR, median[IQR] 0.990 [0.920,1.060] 1.050 [0.970,1.150] <0.001***
D-D (mg/L), median[IQR] 0.400 [0.200,0.870] 0.270 [0.110,0.600] <0.001***
WBC (10^9/L), median[IQR] 6.400 [5.000,8.800] 6.270 [5.000,8.092] 0.323
neutrophil count (10^9/L), median[IQR] 3.800 [2.440,5.930] 4.100 [2.490,6.270] 0.283
Monocyte count (10^9/L), median[IQR] 0.320 [0.200,0.500] 0.400 [0.280,0.520] 0.002**
lymphocyte count (10^9/L), median[IQR] 1.400 [0.900,1.960] 1.590 [1.060,2.120] 0.015*
RBC (10^9/L), median[IQR] 4.140 [3.520,4.600] 4.160 [3.560,4.590] 0.807
HGB (g/L), median[IQR] 125.485 [111.000,138.000] 123.000 [106.000,138.000] 0.192
HCT (%), median[IQR] 36.266 [32.600,40.500] 35.845 [31.400,39.300] 0.104
MCH (pg), median[IQR] 30.200 [28.800,31.500] 30.300 [28.500,31.500] 0.607
MCHC (g/L), median[IQR] 346.000 [336.000,354.000] 343.000 [333.000,352.000] 0.009**
MCV (fl), median[IQR] 87.100 [83.200,91.500] 87.600 [83.500,91.700] 0.631
PLT (10^9/L), median[IQR] 216.000 [160.000,280.000] 209.000 [155.000,263.000] 0.231
PCT (%), median[IQR] 0.249 [0.190,0.295] 0.245 [0.202,0.295] 0.515
RDW (%), median[IQR] 14.000 [13.100,15.300] 13.700 [12.900,15.300] 0.063
ESR (mm/1h), median[IQR] 22.000 [10.000,49.000] 19.000 [10.000,40.000] 0.041*

Immunology indexes 
lgG (g/L), median[IQR] 12.800 [9.050,17.800] 13.900 [10.465,18.000] 0.012*
lgM (g/L) ,median[IQR] 0.982 [0.590,1.460] 1.340 [0.900,1.831] <0.001***
lgA (g/L), median[IQR] 2.624 [1.820,3.520] 2.421 [1.700,3.360] 0.068
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tween 0 and 1, representing the prob-
ability of the subject being classified to 
the treatment group. It discards the sub-
jects who are not matched thus resulted 
in smaller sample size. Therefore, PSM 
was applied to balance the distribution 
of covariates (age and gender) between 
the SLE and control group.
The raw dataset had some noises (con-
tained errors, outlier values), missing 
and inconsistency values that could 
reduce the quality of our dataset and 
affected the model’s performance. 
Therefore, a feature selection process 
was adopted before model construc-
tion. The data preprocessing procedure 
were carried out as follows, 1) Removed 
variables with >30% missing value; 2) 
Removed outlier values; 3) K-nearest 
neighbors method was used for miss-
ing data imputation. Finally, we kept 
60 potential features after consulting 
extensive literature search and discuss-
ing with expert in this area. Continu-
ous variables were presented as mean 
± standard deviation (SD) for normally 
distributed variables or median with in-
terquartile range (IQR) for non-normal-

ly distributed variables, and categorical 
variables were presented as percentage 
frequencies. Demographic and labora-
tory tests were compared using a t-test 
or Mann-Whitney U-test for continuous 
and chi-square test for categorical varia-
bles. We applied Kolmogorov-Smirnov 
Normality test to test for normality, and 
Levene’s-test to test homogeneity of 
variances. Then, normally distributed 
variables were compared by the Stu-
dent’s t-test, and non-normally distrib-
uted variables were compared by Mann-
Whitney U-test. All statistical tests were 
two-tailed and p<0.05 was considered 
significant. SPSS (v. 25.0), R (v. 3.6.1), 
and Python (v. 3.4.3) were were sys-
tematically used for statistical analysis. 
Model construction and visualisation 
were carried out using Deepwise and 
Beckman Coulter DxAI platform. 
Model construction and evaluation
In the training cohort, least absolute 
shrinkage and selection operator (LAS-
SO) logistic regression analysis was 
utilised to rank the importance of risk 
factors. In LASSO regression, the beta 
coefficients of variables that are not 

strongly associated with the outcome 
are decreased to zero, which removed 
these variables from the model. Ten 
Features were confirmed by the LAS-
SO regression and were further select-
ed into the ML model construction. 10-
fold cross-validation was applied to the 
modeling dataset, using 9 of the folds 
as the training set to train the model, 
and the remaining 1-fold as the internal 
validation to score the model. Five ML 
models were constructed to predict the 
occurrence of SLE. The five models are 
Decision tree, XGBoost, Random for-
est, Logistic regression, gradient boost-
ing. The detailed information of the five 
ML models is as follows:1) Decision 
tree is a decision support tool that uses 
a tree-like model of decisions and their 
possible consequences; 2) XGBoost is 
an implementation of gradient boosted 
decision trees designed for better speed 
and performance; 3) Random Forest is 
an ensemble learning method that oper-
ates by constructing a multitude of de-
cision trees at training time; 4) Logistic 
Regression applies the logistic function 
to predict the probability of the class in 

Characteristic SLE cohort  Control diseases cohort p value
 (n=432)  (n=430) 

Urine indexes   
24hrUpr (g/24h), median[IQR] 1.544 [0.338,4.120] 1.340 [0.378,3.236] 0.075
Pathological cast (/LP), median[IQR] 0.149 [0.000,0.800] 0.100 [0.000,0.500] 0.017
U-WBC (/μl), median[IQR] 10.000 [3.600,31.900] 7.300 [2.900,21.700] 0.02**
U-RBC (/μl), median[IQR] 11.200 [4.700,38.900] 8.914 [3.500,31.700] 0.023**

U-GLU 
- 398 (92.13%) 390 (90.698%) 0.863
1/2+ 11 (2.546%) 13 (3.023%) 
+ 5 (1.157%) 9 (2.093%) 
++ 7 (1.62%) 5 (1.163%) 
+++ 4 (0.926%) 5 (1.163%) 
++++ 7 (1.62%) 8 (1.86%) 

U-URO 
- 417 (96.528%) 397 (92.326%) 0.052
+ 12 (2.778%) 23 (5.349%) 
++ 1 (0.231%) 8 (1.86%) 
+++ 1 (0.231%) 1 (0.233%) 
++++ 1 (0.231%) 1 (0.233%) 

Values are presented as median (IQR) for continuous variables or n (%) for binary variables, * p<0.05; ** p<0.01; *** p<0.001.
24hrUpr: 24-hour urine protein; ALP: alkaline phosphatase; ALT: alanine aminotransferase; APTT: activated partial thromboplastin time; APTTR: activated 
partial thromboplastin time ratio; AST: aspartate amino transferase; Ca: calcium; CK: creatine kinase; CL: chlorine; Cr: creatinine; CRP: C-reactive protein; 
DBIL: direct bilirubin; D-D: d dimer; ESR: erythrocyte sedimentation rate; GLU: glucose; GGT: gamma-glutamyl transpeptidase; HCT: haematocrit; HDL: 
high-density lipoprotein; HGB: haemoglobin concentration; INR: international normalised ratio; K: kalium; LDH: lactic dehydrogenase; LDL: low density 
lipoprotein; lgA: immunoglobulin A; lgG: immunoglobulin G; lgM: immunoglobulin M; MCH: mean corpuscular haemoglobin content; MCHC: mean 
corpuscular haemoglobin concentration; MCV: mean corpuscular volume; Mg: magnesium; Na: natrium; P: phosphorus; PA: prealbumin; PCHE: cholinest-
erase; PCT: platelet haematocrit; PLT: blood platelet count; PT: prothrombin time; PTA: prothrombin activity; PTR: prothrombin time ratio; RBC: red blood 
cell; RDW: red blood cell distribution width; SD: standard deviation; TBA: total bile acid; TBIL: total bilirubin; TCHO: total cholesterol; TG: triglyceride; 
TP: total protein; TT: thrombin time; UA: uric acid; U-GLU: urine glucose; U-RBC: urinary red cell count; U-URO: urine urobilinogen; U-WBC: urinary 
white blood cell count; WBC: white blood cell.
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a two-class problem. It is often used to 
predict the risk of developing a given 
disease; 5) Gradient Boosting is an en-
semble of weak prediction models and 
minimises the loss function by adding 
weak learners using gradient descent. 
To evaluate and compare the perfor-
mances of the five ML models, a re-
ceiver operating characteristic (ROC) 
curve was constructed and areas under 
the ROC curve (AUCs) with 95% con-
fidence intervals were calculated. Five 
measurement criteria (F1-score, sensi-
tivity, specificity, positive prediction 
value (PPV), negative prediction value 

(NPV)) were calculated and compared 
to select the best ML model. Further-
more, the calibration curve was used 
to assess the agreement between the 
prediction probabilities and the sample 
probabilities; and the decision curve 
analysis (DCA) was used to assess the 
clinical benefit of the model. The inter-
pretation of the model is performed by 
SHAP, which calculated the contribu-
tion and influence of each feature to-
ward the final prediction precisely. The 
SHAP values can show how much each 
predictor contributes, either positively 
or negatively to the outcome variable. 

The workflow used to develop the ML 
model for SLE is shown in Figure 1

Results
Baseline characteristics
After PSM, 432 patients with clinically 
diagnosed with SLE and 430 control 
patients with other immune diseases 
groups were selected remained after 
the first step of the feature selection 
process. Before PSM, a significance 
difference between age and gender 
were observed between SLE and dis-
ease control groups (p<0.001, p<0.001, 
Supplementary Table S1). Baseline de-

Fig. 2. LASSO regression analysis. 
A: 10-fold cross-validation was used to draw vertical lines at selected values, where the optimal lambda produces ten nonzero coefficients. 
B: Tuning parameter (lambda) selection cross-validation error curve.

Table II. Comparative analysis of the model performance.

 ML model AUC F1-score NPV PPV Accuracy Sensitivity Specificity

Training cohort DecisionTree 0.8299 0.716 0.7002 0.8338 0.7506 0.6273 0.8744
 XGBoost 0.9609 0.8978 0.8871 0.9117 0.8991 0.8843 0.914
 RandomForest 1 1 1 1 1 1 1
 LogisticRegression 0.788 0.7053 0.7037 0.707 0.7053 0.7037 0.707
 GradientBoosting 0.9186 0.8228 0.8102 0.846 0.8271 0.8009 0.8535

Internal validation cohort DecisionTree 0.7258 0.6273 0.6372 0.7242 0.6705 0.5532 0.7884
 XGBoost 0.7999 0.7124 0.7082 0.7288 0.7181 0.6968 0.7395
 RandomForest 0.8286 0.7568 0.7517 0.7685 0.7599 0.7454 0.7744
 LogisticRegression 0.775 0.6952 0.6939 0.6935 0.6937 0.6968 0.6907
 GradientBoosting 0.8066 0.7292 0.7235 0.7488 0.7355 0.7106 0.7605

AUC: area under curve; ML: machine learning; NPV: negative predictive value; PPV: positive predictive value
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Fig. 3. The ROC curves show the discriminative ability of the five ML models. 
A: The AUC in the training cohort; B: The AUC in the internal validation cohort. AUC: area under curve; ROC: receiver operating characteristic.

Fig. 4. Evaluation of validity and reliability of the random forest model.
A: Calibration curve analysis of the internal validation set. B: Decision curve analysis of the training set and the internal validation set. 

Fig. 5. The SHAP to Model Interpretation (A) The SHapley Additive exPlanation (SHAP) values. Redder sample points indicate the value of the feature is 
larger, and bluer sample points indicate the value of the feature is smaller. 
B: The weight of variable importance as indicated by SHAP. The matrixdiagram describes the importance of each covariate in the development of the final 
diagnostic model. 
ESR: erythrocyte sedimentation rate; lgA: immunoglobulin A; lgM: immunoglobulin M; MCHC: mean corpuscular haemoglobin concentration; PTA: pro-
thrombin activity; TP: total protein; TT: thrombin time; UA: uric acid.
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mographic and laboratory test features 
of the patients in the SLE and control 
cohorts after PSM are summarised in 
Table I, where age and gender were 
well balanced between the two groups. 
The median ages of the patients in the 
SLE and control cohorts were 38 (29, 
50) and 44 (34, 49) years old, respec-
tively. The percentage of females in the 
two cohorts was almost five times that 
of males. Twenty two of the laboratory 
tests showed significant differences 
between the two cohorts, namely the 
biochemical indexes LDH, total pro-
tein (TP), low density lipoprotein, C 
reactive protein, UA, urea and glucose; 
the haematology indexes TT, PT, PT 
ratio, PT activity (PTA), international 
normalised ratio, D dimer, monocyte 
count, lymphocyte count, MCHC and 
erythrocyte sedimentation rate (ESR); 
the immunology indexes IgG and IgM; 
the urine index pathological cast, uri-
nary white blood cell count and urinary 
red blood cell count .

ML model establishment 
and evaluation
After LASSO regularisation (lambda 
with minimum mean square error de 
= 0.031), 10 clinical features, namely 
biochemical indexes (UA, TP), im-
munology indexes (IgA, IgM), haema-
tologic indexes (TT, PTA, neutrophil 
count, ESR, MCHC), and urine index 
(Pathological cast), were included in 
the algorithm. The coefficients are 
shown in Supplementary Table S2, and 
a coefficient profile is plotted in Figure 
2A. A cross-validated error plot of the 
LASSO regression model is shown in 
Figure 2B.
To explore the optimal diagnostic 
model, we compared five commonly 
used ML algorithms, Decision Tree, 
XGBoost, Random forest, Logistic Re-
gression and Gradient Boosting. Com-
paratively, RF algorithm had the high-
est predictive performance among the 
five models (Table II) in both training 

cohort and internal validation cohort. 
The AUC value, F1-score, NPV, PPV, 
accuracy, sensitivity and specificity 
of RF model was 1, 1, 1, 1, 1, 1 and 
1 respectively in training cohort. The 
performance of this model was slightly 
decreased in internal validation cohort, 
which had an AUC of 0.8286, F1-score 
of 0.7568, NPV of 0.7517, PPV of 
0.7685, accuracy of 0.7599, sensitiv-
ity of 0.7454 and specificity of 0.7744. 
The ROC curves of each ML model 
were shown in Figure 3.

Explanation of Random Forest Model 
The ROC curve shows that the random 
forest model had good classification 
ability in predicting the risk of SLE 
(AUC = 0.8286, sensitivity = 0.7454, 
specificity = 0.7744). The calibration 
cure showed that the model’s predicted 
probabilities were in good agreement 
with the actual probabilities (Fig. 4A); 
and decision curve analysis (DCA) in-
dicated that the model had high clinical 
benefits (Fig. 4B). These aforemen-
tioned results indicated that the RF 
model was well-fitted and accurately 
diagnose SLE risks. The visualisation 
of the diagnostic model was displayed 
online through Deepwise and Beckman 
Coulter DxAI platform. 
To detect the positive and negative re-
lationships of the predictors with SLE, 
SHAP values were applied to uncover 
the impact of the risk factors. The 10 
most important features selected by 
random forest are shown in Figure 5A. 
In each feature important line, the at-
tributions of all patients to the results 
are plotted with different coloured dots, 
where blue dots represent low risk val-
ues and red dots represent high risk 
values. Compared with the control im-
mune diseases, increased TT, PTA, UA, 
IgA, pathological cast, and ESR, and 
decreased TP, IgM, neutrophil count, 
and MCHC contributed to the diagno-
sis of SLE. The ranking of the 10 fea-
tures evaluated by the average absolute 

SHAP value is shown in Figure 5B. The 
SHAP value on the x-axis indicates the 
importance of the diagnosis model.

External validation study
We collected another 198 cases as an 
external test dataset to further evaluate 
the performance of the SLE diagnos-
tic model; 97 were patients with SLE 
and 101 were patients with the control 
diseases. Baseline characteristics of 
all patients are summarised in Sup-
plementary Table S1. The diagnostic 
performance of our model is shown in 
Table III. The AUC value, sensitivity, 
and specificity were 0.706, 0.607, and 
0.708 respectively. These results indi-
cate that the constructed ML diagnostic 
model based on laboratory test results 
had comparable diagnostic ability.

Discussion
The diagnosis of SLE in clinical prac-
tice is challenging and depends on the 
clinical experience and expertise of 
rheumatologists. The clinical manifes-
tations of SLE are atypical and insidi-
ous, and share symptoms in common 
with other diseases. Accurate diagnosis 
of SLE is challenging and often leads to 
delayed diagnosis (2, 22). Furthermore, 
multiple laboratory tests are performed 
in SLE diagnosis, and instruments that 
are available in primary hospitals are 
often limited, leading to misdiagnosis 
and missed diagnosis. In this study, we 
used an RF algorithm to develop a di-
agnostic model that could distinguish 
patients with SLE from patients who 
did not have SLE based on 10 common 
laboratory indicators that cover most 
patients in areas where there are only 
limited healthcare resources.
ML and data-driven approaches are 
becoming very important, especially 
in the medical field. These approaches 
address traditional limitations by us-
ing underlying connections that can-
not be discovered with other statistical 
techniques to make accurate decisions 
ML analysis is particularly useful for 
research in complex chronic diseases, 
such as rheumatic autoimmune inflam-
matory diseases, in which the disease 
conditions are extremely heterogene-
ous and multiple factors contribute 
to disease diagnosis and progression. 

Table III. The performance of the model in the external validation cohort.

RF model AUC Sensitivity Specificity

External validation cohort 0.706 0.607 0.708

AUC: area under curve; RF: random forest.
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Other studies have established ML al-
gorithms to classify patients with SLE 
using combinations of multiple indica-
tors. In a Swedish study, an RF classi-
fier with AUC of 0.78 was built to clas-
sify patients with SLE using genotype 
data (23). Ceccarelli et al. (24) incor-
porated demographic data and labora-
tory and clinical parameters, and used 
an artificial neural network model to 
identify risk of chronic organ damage 
in SLE. Maffi et al. (25) established 
ML techniques that correctly predicted 
difficult-to-treat flares based on base-
line clinical variables. Such approaches 
may help to support clinicians in their 
treatment decisions. However, less re-
search has been directed towards the 
diagnosis of SLE, which needs to be 
differentiated from rheumatoid arthri-
tis, myositis, sicca syndrome, connec-
tive tissue diseases, and other immune 
diseases (26, 27). No single biomarker 
can be sensitive and specific enough 
for SLE, and therefore combinations 
of multiple biomarkers are needed to 
help clinicians make comprehensive 
judgements. ML potentially has the 
utility and power in this context. Sev-
eral studies have analysed blood poly-
peptides and lipids and distinguished 
patients with SLE from control groups 
using ML approaches (28-30). Adam-
ichou et al. (31) developed an accurate 
algorithm based on classical disease 
features that can aid SLE diagnosis 
and assess severe forms. Their model 
included clinical features that require 
subjective judgement and specific an-
tibodies and complement that were not 
widely available in primary hospitals. 
Although all of these studies yielded 
useful results, detecting some of the in-
dicators included in the model is com-
plicated and the clinical application is 
limited. The diagnostic ML model that 
we built showed high predictive abil-
ity for SLE, and had good discrimina-
tive ability in predicting patients with 
SLE in both the internal validation and 
external validation cohorts. The model 
based on 10 factors performed well, 
with AUC values of 1, 0.8286, and 
0.706 in the training, internal, and ex-
ternal validation sets, respectively.
The online diagnostic model built in 
this study will enable clinicians to iden-

tify patients with SLE based on objec-
tive laboratory indicator values using 
portable laptops or mobile devices. The 
model includes only 10 common labo-
ratory indexes that are more clinical 
accessibility and less costly than other 
SLE biomarkers that have been used, 
such as autoantibodies and inflamma-
tion factors. Our model also performed 
better than previous models, especially 
in identifying patients with SLE who 
did not have typical clinical symptoms 
or lacked specific serological features. 
For healthcare centres, community hos-
pitals, and even some municipal hospi-
tals in China, the available of clinical 
laboratory tests are inadequate, and 
therefore our model can be used to help 
physicians identify patients with SLE 
and distinguish them from patients with 
other immune diseases based on com-
mon laboratory indicators.
The LASSO screened and ML model 
constructed in this study identified 10 
risk factors with the highest explana-
tory power for SLE diagnosis, namely 
TT, PTA, UA, IgA, TP, IgM, neutro-
phil count, pathological cast, ESR, and 
MCHC. Five of these features are in-
cluded in the SLICC criteria (7), name-
ly IgA, IgM, neutrophil count, patho-
logical cast, and MCHC. Additionally, 
some new laboratory tests from the 
SLICC criteria were identified as pre-
dictors, such as TT, PTA, UA, TP, and 
ESR, indicating their contribution to 
the disease network may provide clues 
for a deeper understanding of the patho-
genesis of SLE. Several studies have re-
ported laboratory indexes as the clinical 
presentation for patients with SLE. 
In our study, the SHAP plot shows TT 
as the largest contributor to the model 
prediction, indicating its important role 
in the diagnosis of SLE. In practice, 
thrombotic complications and coagula-
tion disorders contribute significantly 
to morbidity and mortality rates in pa-
tients with SLE (32). Compared with 
the control diseases group, the patients 
with SLE have abundant immune com-
plexes and activated complement sys-
tem in the blood, which likely leads to 
platelet activation (33). Phosphorylated 
fibrinogen is generated by activated 
platelets, leading to an increase of its 
coagulability and promote thrombotic 

complications in SLE patients (34). A 
study reported thrombocytopenia has a 
high prevalence in SLE patients and is 
related to increased TT (35). PTA was 
also accounted for a high weight in the 
ML model, which was calculated from 
PT and is a significant coagulation bio-
marker that reflect the clotting ability 
of blood.  Previous studies have shown 
that anti prothrombin antibodies could 
contribute to thromboembolic risk as-
sessment and stratification of patients 
with SLE, which may affect the test re-
sults of PT and PTA (36). Fujiwara et 
al. emphasized that measuring the PT 
might be required in patients with Lu-
pus anticoagulant-hypoprothrombinae-
mia syndrome when they do not have 
a typical clinical course or distinctive 
symptoms (37). These coagulation in-
dicators are not mentioned specifically 
in the classification criteria of SLE. Our 
results highlight the important relation-
ship between SLE and coagulation and 
provide some ideas for the diagnosis and 
treatment of SLE in clinical practice. 
Lupus nephritis is a common manifesta-
tion of SLE that arises as a result of anti-
body–antigen complexes that deposit in 
the glomerulus and cause a thickening 
of the basement membrane (32, 33, 38). 
In this study, UA and Pathological cast, 
the renal dysfunction marker, were se-
lected into the diagnostic model. A study 
by Yang et al. (21) found that increased 
amounts of UA accompanied by eryth-
rocytopenia had an independent posi-
tive association with thrombocytopenia 
and negative association with skin rash 
and arthritis in patients with SLE. The 
antibody binding to multiple intrarenal 
autoantigens induced more obvious tu-
bular injuries and results in pathologi-
cal cast formation and tubular dilatation 
(39). Because of renal damage and the 
production of proteinuria, TP was de-
creased in patients with SLE (40). 
Haematological abnormalities are very 
frequently associated with SLE (4). For 
haematologic indexes, MCHC, Neu-
trophil count and ESR were included 
in ML model. Anaemia is particularly 
common in patients with SLE (41), 
and MCHC was included in the ML 
model as an indicator for the diagnosis 
of anaemia (42). Several studies have 
shown that changes in iron homeosta-
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sis, impaired erythropoiesis and de-
creased EPO secretion were associated 
with decreased MCHC level in patients 
with SLE (43). In patients with SLE, 
thrombocytopenia and autoimmune 
aetiology contributes directly to neu-
tropenia (44). ESR have been reported 
as useful reliable markers for assessing 
immune, inflammatory response, and 
disease activity in patients with SLE 
(45). Other indicators associated with 
immune dysfunction, such as IgA and 
IgM, have been shown to be associated 
with the pathogenesis of SLE that char-
acterised by the production of autoanti-
bodies to a broad range of self-antigens 
(46). We applied ML on panels of these 
laboratory indexes to construct a model 
that can distinguish SLE from compet-
ing rheumatologic conditions.
Our study has several limitations. First, 
clinical symptoms and social determina-
tions could potentially be useful for the 
development of an ML model for SLE, 
but these data were not available in the 
LIS. Second, the prediction model was 
based on clinical information on pa-
tients’ first visit, but might be affected 
by different courses and treatment of 
the disease. Therefore, a prospective 
clinical study and a subgroup analysis 
of patients with the same courses could 
be carried out in the future to minimise 
bias. Third, the patients with SLE were 
from a single centre research, and there-
fore, the number of patients was limited. 
Other centres, other populations, and 
more clinical features should be includ-
ed in future studies to improve and veri-
fy our prediction model. Fourth, we did 
not implement our model in real clinical 
practice, and therefore the clinical value 
of our model remains unknown.
Overall, this study showed the poten-
tial of diagnosis of atypical SLE based 
on common laboratory indexes, which 
could help physicians fast screen pa-
tients for SLE even with limited re-
sources or experience.

Conclusions
We created an online portable model 
for predicting SLE based on LIS and 
EMR information that does not rely on 
the clinical experience of rheumatolo-
gists and can accurately diagnosis SLE 
with objective and easily accessible 

laboratory tests. Such a model will be 
valuable for improving the efficiency 
of screening patients with suspected 
SLE and will provide an accessible tool 
for primary care clinicians with limited 
healthcare resources. Moreover, the 10 
laboratory indexes screened by the ML 
model provide a new idea and refer-
ence for SLE pathogenesis research.
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