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ABSTRACT
Objective
To provide a rational model for the use
of disease-modifying antirheumatic drug
(DMARD) combinations in the treatment
of rheumatoid arthritis.
Methods
The DMARDs used today were examined
for their mechanisms of action, kinetics,
and toxicity, and collected into tabular
formats for easier comparison. From
these tables, matrices of potential posi-
tive or negative interfaces among com-
binations were constructed. Finally,
these matrices were used to examine the
usefulness of DMARD combinations by
comparing them with published data.
Results
When clearly overlapping cells were
found with respect to mechanisms of ac-
tion, kinetics, or toxicity (e.g., methotrex-
ate [MTX] plus azathioprine or MTX
plus auranofin) predictions were good.
When knowledge in these areas of kinet-
ics and/or mechanisms of action were
inadequate, predictions and results were
not always consonant (e.g. MTX plus
sulfasalazine; D-penicillamine plus hy-
droxychloroquine).
Conclusions
The approach demonstrated in this pa-
per toward rational combination therapy
is logical and can be successful, al-
though its success is circumscribed by
our knowledge about the drugs we use.
The rational approach to combination
therapy demonstrated in this article can:
1) help prevent the use of combinations
unlikely to be effective; 2) can point to-
ward directions for useful research; and
3) can even be used when physicians are
faced with patients whose needs have ex-
ceeded our present scientific knowledge.

Introduction
In the context of the kinetics, toxicity,
and mechanisms of action of disease-mo-
difying antirheumatic drugs (DMARDs),

and considering our present day under-
standing of rheumatoid arthritis (RA)
pathogenesis, one can construct a frame-
work for rational combination therapy of
RA. In this chapter, we will first, very
briefly, describe the present knowledge
of DMARD mechanisms of action (more
fully reviewed in 1, 2, 3). This will be
followed by condensed summaries of
their pharmacokinetics and major toxi-
cities. These, in turn, will be woven to-
gether to develop rational matrices for
combining various DMARDs. As it will
not be possible to provide a comprehen-
sive review of the data for such an ap-
proach, illustrative examples will be used
to demonstrate the principles. It will be-
come obvious, as the process proceeds,
that the major limitation of this approach
is incomplete knowledge about various
aspects of the matrices, especially relat-
ing to mechanisms of action and phar-
macokinetics. This limitation does not,
however, abrogate the principles illus-
trated by the approach. This approach
can help to define future studies and can
even help clinicians when they must treat
patients who have already tried, and
failed, combinations whose results have
been well documented.

The mechanisms of action of pharm-
acologic agents used to “modify” RA
(see Table I)
Azathioprine
Azathioprine (AZA), through its effects
on 6-thioinosinic and 6-thioguanylic
acid, interferes with adenine and guanine
ribonucleotide synthesis (1-4). Its main
active metabolite is 6-thioinosinic acid,
which itself is a metabolite of AZA’s
principal metabolic product, 6-mercapto-
purine (6-MP). These, in turn, lead to a
poorly understood reduction in circulat-
ing T-lymphocyte numbers (especially
CD8+ suppression), mixed lymphocyte
reactivity, B cell function (IgM and IgG
synthesis) and interleukin-2 (IL-2) secre-
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tion. Although both cell proliferation and
Ig synthesis require the nucleic acids
whose synthesis is inhibited by AZA, the
effect of AZA on Ig synthesis seems less
than on cell proliferation.

Cyclosporine A
Cyclosporine A (CSA) complexes with
cyclophilin (a cytoplasmic housekeep-
ing protein), which then binds calcineu-
rin (an intracellular phosphatase) (2,5,6).
This, in turn, regulates gene transcrip-
tion coding for cytokines, especially IL-
2. CSA inhibits T cell interaction with
macrophages and decreases IL-2 synthe-
sis and release, and thus inhibits ampli-
fication of cellular immune responses.
IL-1- and IL-2 receptor production is
also inhibited, so that IL-2-dependent
cellular functions, such as B cell respon-
ses to T-cell dependent antigens, inter-

feron-γ (IFNγ) production and natural
killer (NK) cell activity are decreased. T
cells which are already activated are not
affected. T cell independent functions,
such as macrophage response to lymph-
okines, are not impaired, and B cell re-
sponses to T cell-independent antigens
are not affected.

D-Penicillamine
D-Penicillamine (D-Pen) modulates the
activities of T-lymphocytes, NK cells,
monocytes, and macrophages (7). Al-
though the mechanism of action is still
uncertain, it seems likely that the drug
regulates the immune system through
exchange reactions in or on cell surface
receptor sulfhydryl groups. Recent data
suggest that D-Pen inhibits the DNA-
binding of the transcription factor AP-1,
a dimer of the proto-oncogenes jun and

fos (8). This, in turn, reduces the expres-
sion of various cytokines, metallopro-
teases, and cell adhesion molecules, and
could account for this drug’s antiinflam-
matory properties.

Gold
Gold in the form of injected organic
polymeric gold complexes (such as auro-
thiomalate or aurothioglucose), or oral
gold (as auranofin) enters into cells
through a sequence of ligand exchange
reactions involving sulfhydryl groups on
the cell surface. One possible mechanism
of action is similar to that of D-Pen - an
interaction with the transcription factor
AP-1, since AP-1 binding is inhibited by
aurothiomalate (7, 9). This results in a
cascade of anti-inflammatory effects
(10). The cellular actions of injectable
gold may relate to the formation of mo-

Table I. Mechanisms of action of DMARDs.

AZA Cyclosporin D-Pen Gold HCQ/CQ Leflun MTX Mino SSZ

T cell inhibition: + + + +
   CD8+ +
   CD4+

   IL-2 + +
   IL-8 +
   IL-10 +
   Interferon gamma +

B cell inhibition: +
   Ig synthesis + + + +
   Natural killer cell inhibition + +/-
   Prostaglandin inhibition +
   Phospholipase A2

Macrophage inhibition: + + + +
   iNOS +
   TNFα +
   IL-1 + + +

Antigen processing: +
   Activator protein-1 activity + + +
   NFκβ + + +

Polymorphonuclear leukocyte inhibition:
   Phagocytosis + +
   Lysosomal enzyme release + +
   Chemotaxis +

DHODH +

AICAR and DHFR +

MMPI (collagenase) + + +

Oxygen radical scavenging +

AICAR: 5-aminoimidazole-carboxamide-ribonucleotide-transformylase; AZA: azathioprine; DHFR: dihydrofolate reductase; DHODH: dihydroorotate
dehydrogenase; D-pen: D-penicillamine; Gold: auranofin and organic gold compounds; HCQ: hydroxychloroquine; Ig: immunoglobulin; IL: interleukin;
iNOS: inducible nitric oxide synthase; Leflun: Leflunomide; Mino: Minocycline; MMPI: matrix metalloprotease inhibition; MTX: methotrexate; NFκβ:
nuclear factor kappa beta; SSZ: sulfasalazine; TNFα: tumor necrosis factor alpha.
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nomeric aurocyanide from cyanide re-
leased during polymorphonuclear pha-
gocytosis. If aurocyanide is the active
metabolite of organic gold, it would be
preferentially formed by activated poly-
morphs and macrophages. Other effects
ascribed to gold are the inhibition of: (i)
phagocytosis and lysosomal enzyme ac-
tivity in polymorphonuclear cells (PMN)
and monocytes; (ii) macrophage func-
tion; (iii) HLA class II expression on
monocytes; (iv) proliferation of synovial
cells, and IL-1-induced proliferation of
lymphocytes. Immunoglobulin and rheu-
matoid factor (RF) levels are also de-
creased. All of these latter effects either
require unrealistically high gold concen-
trations in vitro or may be due to gold-
induced disease suppression in vivo, and
may therefore be secondary effects (9).

Antimalarials
Hydroxychloroquine (HCQ) and chloro-
quine, known as antimalarials, are sup-
posed to change the functions of the acid
vesicular lysosomal system (7, 11, 12).
HCQ, about which more is known, ac-
cumulates in the acid lysosomes of lymp-
hocytes, macrophages, fibroblasts and
polymorphs. By alkalinizing the lyso-
zymes and/or interfering with protease
function and release, HCQ may affect the
glycosylation of proteins, the digestion
of membrane proteins, and the turnover
of cell surface receptors (13). Addition-
ally, inhibition of IL-1 release from mo-
nocytes and macrophages, trapping of
free radicals, inhibition of RNA and
DNA synthesis, and inhibition of the
antigen-processing ability of monocytes
and macrophages might be further mech-
anisms of action through this same mech-
anism (14).

Leflunomide
Leflunomide, a new drug for the treat-
ment of RA, acts through its metabolite,
A77-1726 (15-17). A77-1726 inhibits di-
hydroorotate dehydrogenase (DHODH),
which leads to decreased levels of rUMP,
and p53 activation (18). P53 is a “sen-
sor” molecule and prevents, when acti-
vated, progression through the cell cy-
cle, so that stimulated cells arrest in the
G1 phase (19, 20). In addition A77-1726
increases the mRNA level of IL-10 re-
ceptors, decreases IL-8 receptor type A

mRNA concentrations, and blocks tumor
necrosis factor (TNF)-dependent nuclear
factor-kappa B activation (21). The lat-
ter is a particularly important step in the
inflammatory response.

Methotrexate
Methotrexate (MTX) very effectively
inhibits 5-aminoimidazole-carboxa-
mide-ribonucleotide-transformylase
(AICAR), thus decreasing polymorpho-
nuclear chemotaxis (2, 22). A possible,
though less likely, mechanism of action
is through the inhibition of dihydrofo-
late reductase (DHFR). Directly and
through its 7-OH metabolite, DHFR in-
hibition can lead to a lack of purine nu-
cleotides, thereby interfering with the
formation of DNA, RNA, and other pro-
teins. MTX and 7-OH-MTX-polygluta-
mates accumulate in cells, resulting in
the inhibition of T-cell and macrophage
function. Together with other antiinflam-
matory effects, such as normalization of
IL-2 levels (through an effect on poly-
amine synthesis) (23), the decrease in IL-
1 secretion and the reduction of IgM-RF
production, these mechanisms make
MTX an effective antiinflammatory
compound at the macrophage, T cell, and
granulocyte levels.

Minocycline
Minocycline, as a representative of the
tetracyclines, has multiple immunomo-
dulating and antiinflammatory effects
(24, 25). Which of these effects are im-
portant in RA treatment is uncertain,
because many of them have been seen
only in cell cultures or animal models.
Minocycline inhibits metalloproteases
such as collagenase (from neutrophils,
macrophages, osteoblasts, chondrocytes,
epithelial cells, and rheumatoid synovi-
ocytes), which may reduce bone resorp-
tion (26). A recent study demonstrated
the inhibition of IFN-γ-stimulated induc-
ible nitric oxide synthase (iNOS) in ma-
crophages (27). Furthermore, minocy-
cline decreases PMN phagocytosis, che-
motaxis, and migration, decreases mo-
nocyte phagocytosis, and inhibits lym-
phocyte proliferative responses. Reduc-
tion of IFNγ, IL-2, and TNFα produc-
tion in cloned synovial T cells and addi-
tional putative affects of minocycline
may be due to the chelating activity of

minocycline, and have not been shown
in vivo (28).

Sulfasalazine
Sulfasalazine (SSZ) may suppress im-
munologic processes in the gastrointes-
tinal tract where concentrations are very
high, but its mode of antirheumatic ac-
tion is still unknown (7, 29). While one
primary metabolite, 5-acetylsalicylic
acid, is the active drug in inflammatory
bowel disease, either sulfapyridine alone
or both sulfapyridine and the parent com-
pound act in RA. Potentially important
mechanisms include the ability to scav-
enge proinflammatory reactive oxygen
species, to lower prostanoid levels (es-
pecially leukotriene B4 in polymorphs
and thromboxane A2 in platelets), and
to reduce the number of circulating acti-
vated lymphocytes (30-31). Studies do-
cumented effects on collagenase and
stromolysin on rabbit chondrocytes in
vitro (33).

The pharmacokinetics of pharmaco-
logic agents used to “modify” RA
While understanding the mechanisms of
drug actions is important, it is equally
important to know to what degree, and
in what form, a drug reaches the puta-
tive targets of therapy (the cells in and
around the joints, lung, heart, kidney,
gastrointestinal tract, and other target or-
gans of this multisystem disease). Fur-
thermore, the duration of effect, poten-
tial organ toxicity, and drug interactions
of these medications must be understood
to use them most effectively and safely.
Many aspects of DMARD pharmacoki-
netics are not known or cannot be placed
conveniently in a table. Table II displays
the overall pharmacokinetic estimates for
the DMARDs being considered. The
drug-by-drug examination below ex-
pands these data, where possible.

Azathioprine
AZA is well absorbed and metabolized
by way of xanthine oxidase, opening a
path to interactions with drugs such as
allopurinol. The numbers in Table II may
be somewhat misleading, as a great deal
of intra-individual variation has been do-
cumented for AZA pharmacokinetics.
For example, there was a difference as
large as 257% in azathioprine AUC for
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the same individual on two consecutive
days in one study (34).
The major pathway for 6-MP meta-
bolism is thiopurine methyltransferase
(TPMT), and this enzyme’s genetic poly-
morphism leads to very low concentra-
tions in 1 of 300 persons. Low TPMT
levels, in turn, lead to an increased risk
of severe myelosuppression after AZA
administration in the affected population
(35).

Cyclosporine A
CSA absorption is quite variable, al-
though a new formulation, Neoral®, de-
creases the variability somewhat. Impor-
tant interaction occurs with grapefruit
juice, whose flavons improve absorption
by up to 62% (36, 37).
Because cyclosporin is metabolized
through the CYP3A system, and because
CYP3A is an important drug-metaboliz-
ing enzyme family, multiple drug inter-
actions can and do occur. For example,
ketoconazole, fluconazole, and erythro-
mycin inhibit CSA metabolism, while ri-

fampicin and phenytoin induce its me-
tabolism, all through CYP3A (38-40).
AZA, probably through another and un-
known mechanism, can decrease CSA-
AUC by about 50% (41).

Others
While the plasma concentrations of gold
have half-lives in terms of days and
weeks (see Table II), the total body half-
life of intramuscular gold is about one
year. One of the reasons for the long body
half-life is that gold distributes into the
macrophages where it is deposited in
lysosomes. Eventually, the lysosomes
become packed with gold and are then
called “aurosomes” (42-45). Synovial
fluid concentrations are about 50% of
plasma levels.
HCQ is metabolized through de-alkyla-
tion to several metabolites, and these
have optically active forms. Recent data
indicate a closer relationship with effi-
cacy for one metabolite (Desethyl-HCQ)
than for HCQ itself (in preparation,
Münster et al.).

Leflunomide’s total clearance is mark-
edly enhanced by cholestyramine, with
a 40 - 65% increase in clearance after 4
days of 8 gm/tid cholestyramine (46).
Data on leflunomide and its active meta-
bolite (the active moiety) is scarce. No
interactions of leflunomide with cyclo-
sporine, prednisone, or nonsteroidal anti-
inflammatory drugs (NSAIDs) have
been found, based on clinical studies but
not on published, formal pharmacoki-
netic studies.
MTX absorption is variable between in-
dividuals but consistent within individu-
als. Bioavailability is the same whether
MTX is given as a solution, tablet, sub-
cutaneously, or intramuscularly (47).
Food does not affect the bioavailability
of MTX (48). Age affects AUC, with
higher AUC with increasing age from in-
fancy through adolescence, and there is
a significant circadian rhythm for MTX
pharmacokinetics (49, 50). While MTX
itself accounts for most of this drug’s ac-
tivity, the 7-OH metabolite, which ac-
cumulates to a high degree in cells as a

Table II. Pharmacokinetics of DMARDs.

Absorption Clearance Serum Volume Protein Elimination Metabolism
elimination (t1/2) distribution binding (%)

Azathioprine 0.8 (6-MP) 114 (6-MP) 0.2 - 0.5 hr — 30 20 - 45% renal Liver > renal
(ml/min/kg) 1.5 hr (6-MP)

Cyclosporine A 0.2 - 0.5 2 - 32 3 - 7 hrs 3 - 5 l 87 94% biliary CYP
variable  ml/min 6% renal 3A

D-Penicillamine — — 1 - 7.5 hrs. 57 - 93 l — 25% renal Liver
(up to 6 days)

Gold thiomalate 0.95* — 5 - 12 days — 94 60 - 90% renal ? dicyanogold

Gold thioglucose 0.95* — 3 - 27 days — 95 70% renal ? dicyanogold
(up to 168 days) 30% liver

Auranofin 0.15 - 0.25 0.0085 15 - 31 days — 71 15% renal —
ml/min/kg 85% fecal

Hydroxychloroquine 0.74 95 ml/min 6 - 40 days 5500 l 16 - 25 16 - 25% renal Liver

Leflunomide — 0.25 - 0.32 4 - 28 days 12.7 l “extensive” 90% renal or Liver
ml/kg/hr 60 - 40 days fecal

 (active metab.)

Methotrexate 0.73 80 - 90 8 - 15 hrs. — 45 - 51 49 - 100% renal Liver
(0.25 - 1.00) ml/min/m2 20% biliary

Minocycline 0.90 “low” 15 - 20 hrs. — 76 10 - 13% renal Liver

Sulfasalazine 0.33 — 7.6 hrs. 7.5 l 90 70 - 90% renal Liver
(6 - 17 hrs.) GI

* = Animals; 6-MP = 6-Mercaptopurine; GI = gastrointestinal.
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polyglutamate, may add to MTX activ-
ity (51). NSAIDs decrease MTX clear-
ance, but the effect on toxicity can eas-
ily be monitored and is not substantially
different among the various NSAIDs
(51).
SSZ is extensively metabolized through
acetylation and hydroxylation and is then
glucuronidated. Since acetylation and
oxidation have genetic polymorphisms,
substantial differences in metabolism
among individuals can occur (52, 53).

Toxicity
Table III outlines the toxicities found in
a number of articles and/or from the
package information/insert. Occasional
or rare adverse events are not shown.

Rational combinations of DMARDs
By using data from Tables I - III, matri-
ces of DMARD combinations can be
developed to examine the interactions of
DMARD when used in combination.
Three such matrices are displayed as
Tables IV through VI, for MTX, CSA
and HCQ. The principal limitation(s) of
these matrices lie in our limited knowl-
edge of these compounds, particularly in
the kinetics and mechanism spheres. Be-
cause the tables are limited, one can draw
only tentative conclusions from them.
In general, when negative interactions

abound, combinations should not be
used; when [?] (not determined) are fre-
quent, predictions are fraught with un-
certainty; when all interfaces are “OK,”
one would expect a positive interaction.
From Table IV one would expect that
AZA and MTX, as a combination, would
not be effective (there are two [-]), nor
would gold and methotrexate (two [-]).
The effect of CSA plus MTX or SSZ and
MTX would be hard to predict from this
table (one “OK,” one [-], and one inde-
terminate/unknown). To some extent,
these predictions can be tested, based on
published studies.
The negative prediction regarding MTX
plus AZA was proven true, as the use of
MTX plus AZA yielded no additive or
synergistic effects compared with MTX
alone (54). In a 24-week double-blind,
parallel trial, MTX plus AZA was not
better than MTX alone and only mini-
mally better than AZA alone. The 30%
response in the swollen joint count (SJC)
and the tender joint count (TJC) for the
groups were: 44% SJC and 44% TJC for
AZA; 66% SJC and 55% TJC for MTX;
and 58% SJC and 61% TJC for the com-
bination therapy.
Gold (as auranofin [AUF]) plus MTX
would also be predicted to be a poor
combination, and a 48-week double-
blind trial of AUF, MTX, or the combi-

nation also supported that prediction
(55). A limitation of this, and most tri-
als, is that the disease duration was long
(e.g., 55-74 months in this trial). Using
50% improvement as a response crite-
rion, the SJC and TJC responses for the
AUR, MTX, and combination (combo)
groups were: 34% SJC and 33% TJC for
AUR; 43% SJC and 38% TJC for MTX;
and 36% SJC and 39% TJC for the
combination. Once again, the prediction
seems correct.
An “OK” in 1 of 3 columns and a ? in 1
of 3 columns for MTX and cyclosporin
indicates an indeterminate chance of an
additive response (Tables IV and V). The
best trial of this combination was de-
signed to maximize the likelihood of re-
sponse, as the double-blind administra-
tion of CSA or placebo was added to
patients inadequately controlled on back-
ground MTX (56). Here MTX treatment
is tolerated but not sufficiently effective,
and an additional drug is added. If the
added drug (in this case, CSA) is effec-
tive, one would expect an additional re-
sponse. At the end of this 6-month, dou-
ble-blind trial, the combination of MTX
and CSA improved the SJC and TJC by
24% and 26%, respectively, over MTX
alone. It therefore appears that the com-
bination of MTX plus CSA improved the
response to background MTX.

Table III. Selected toxicities of DMARDs.

AZA CSA D-Pen Gold HCQ/CQ Leflun MTX SSZ
(mg/day) (mg/kg/day) (mg/day) (mg/week) (mg/day) (mg/day) (mg/week) (mg/day)

Eyes 0.7

Gastrointestinal tract 9-23 6.0 1.3 3.3 2+ 2.1

Nausea/vomiting 9-23 2.0 1.3 2.1 12.5

Diarrhea 3.9 (oral) 2+

Hepatic 0-5 1.0 2+ 10.3 1.6

Renal 25.0 3.0

Fever 1-6 1.1

Rash 13.0 (3.2; oral) 3.2 3.8

Stomatitis, gingivitis 1.6 1.8 2.6

Decreased WBC (leucopenia) 4.27 1.0 1.5 1. 1.1

Proteinuria (leukopenia) 5.0 3.7

CNS effects, paresthesias 8.0 1+

Other * 1.4 2.2 1.0 2 1.1

AZA = azathioprine; CSA = cyclosporin A; D-Pen = D-penicillamine; Gold = gold sodium thiomalate and oral gold; HCQ/CQ = hydroxychloroquine/
chloroquine; Leflun = leflunomide; MTX = methotrexate; SSZ = sulfasalazine; WBC = white blood cells; CNS = central nervous system.
* Other: Drug-dependent events, but includes items such as hirsutism, hypertension, hair changes, and miscellaneous effects.
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In contrast, while the matrix is “indeter-
minate” for the combination of SSZ and
MTX (1 of 3 is “OK,” 1 of 3 is [-], re-
spectively and 1 of 3 is “indeterminate/
unknown”), just as it was for cyclosporin
and MTX, the result here is different. A
24-week, double-blind, 105-patient com-
parison of SSZ, MTX, or their combi-
nation yielded no additive effect (57).
Table VI examines HCQ and other
DMARDs. It appears as if HCQ/CQ plus
any DMARD has at least a reasonable

chance of being effective (at least 2
“OK”). While no large, well-controlled
trial of MTX plus HCQ has been pub-
lished, row 6 indicates a reasonable
chance of an additive effect (2 of 3
“OK”). An observational study indicated
fewer SGPT elevations for the combi-
nation of MTX and HCQ than in MTX
patients not using HCQ (5.6% versus
9.3%) without any change in efficacy
(58). CQ plus MTX showed additive ef-
ficacy in a well-controlled trial (59). On

the other hand, D-pen plus HCQ showed
no additive efficacy, despite the predic-
tion of a possible positive effect (2
“OKs”) (60).
Thus, these matrices are often supported
by published data, but this approach has
limitations. This is especially true when
“indeterminate or unknown” interfaces
interfere with the ability to clearly deter-
mine likely outcomes or, as in the HCQ
matrix, lack of knowledge overwhelms
the logic of the approach. For example,
in Table IV, consider the combination of
SSZ and MTX: kinetic interactions are
“indeterminate/unknown,” mechanistic
interactions are “OK” (non-overlap-
ping), while toxicity has a “negative”
overlap. A change in any one of these
“interactions,” based on new knowledge,
would radically change the prediction
based on the matrix.
Likewise, the lack of any [-] matrix cells
in Table VI may be an oversimplifica-
tion. The combination of D-pen and
HCQ was not positive despite its predic-
tion, while D-pen plus CQ was additive
(58, 59). This emphasizes our lack of
understanding of the similarities and of
differences between CQ and HCQ.
These latter examples demonstrate that
the matrices continue to be limited by
our lack of knowledge of DMARD ki-
netics, mechanisms, and toxicities, but
they do not invalidate the general ap-
proach: rational decisions concerning
DMARDs can and should be made based
on DMARD clinical pharmacology. Fur-
thermore, when faced with incomplete
knowledge, the use of data in matrices
such as those shown in Tables IV  - VI
can still improve our choice of DMARD
combinations by at least eliminating ob-
viously poor options (2 [-]) and encour-
aging the use of the most positive choices
(3 “OK”). Although controlled trials re-
main the standard and must be the final
arbiter of the DMARD combinations
used, the clinician, when faced with a
patient who has tried and “failed” proven
combinations, can use the rational ap-
proach demonstrated here to improve the
probabilities of a positive outcome.
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