Sex and body mass index impact on digit circumference for Leeds Dactylitis Index calculation

For affiliations, see page 3.

Manuel Silvério-António, MD
Ana Maria Rodrigues, PhD
Filipa Teixeira, MD
Jesús Tavares-Costa, MD
Alexandra Bernardo, MD
Sofia Pimenta, MD
João Lagoas Gomes, MD
Renata Aguiar, MD
Tânia Videira, MD
Patrícia Pinto, MD
Helena Santos, MD
Graça Sequeira, MD
Lídia Teixeira, MD
Ray Miguel Ribeiro, PhD
João Eurico Fonseca, PhD
Elsa Vieira-Sousa, PhD

Please address correspondence to: Manuel Silvério António
Rheumatology Department,
Hospital de Santa Maria,
Centro Hospitalar Universitário Lisboa Norte,
Av. Professor Egas Moniz,
1649-035 Lisbon, Portugal.
E-mail: manuelsilv@gmail.com
Received on May 6, 2023; accepted in revised form on October 5, 2023.
© Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2024.

Key words: psoriatic arthritis, dactylitis, digital circumference, Leeds Dactylitis Index, Body Mass Index

Competing interests: non declared.

ABSTRACT

Objective. To estimate digit circumference and the impact of sex and body mass index (BMI) for the calculation of the Leeds Dactylitis Index (LDI) in psoriatic arthritis (PsA) patients with bilateral dactylitis.

Methods. Digit circumference of the hands and the foot were measured with a dactylometer and were studied according to sex and BMI (divided in 4 weight categories) in healthy Portuguese subjects, using Student’s t-test and One-way ANOVA, respectively. The effect size of sex and BMI were calculated using Cohen’s d test and Eta squared, respectively. Multiple linear regression was used to calculate the effect of sex and BMI, as well as their interaction, to create a formula to predict digit circumference.

Results. Fifty-nine participants (33 women, 26 men) with a mean BMI of 24.8 were included. Men’s mean digit circumpiferences were statistically higher than those of women (p<0.001), with a large sex effect size in most of the digits. Differences in the mean circumference between the four BMI categories were statistically significant (p<0.05) for all digits, with a large BMI effect size. Sex and BMI were independent variables to predict mean digit circumference (p<0.001). A new tool (based on regression analysis) allowing to estimate the circumference of digits for males and females of different BMIs is presented.

Conclusion. Our data allows the calculation of digit circumference for males and females of different BMIs in the Portuguese population; and shows that BMI influences digital circumference supporting BMI inclusion in LDI references tables.

Introduction

Dactylitis is a hallmark manifestation of psoriatic arthritis (PsA) that occurs in 16–49% of the reported cases (1, 2). Clinically, it corresponds to a diffuse swelling of a digit of the hands or feet. Although its precise pathogenic mechanisms remain unknown, it can be considered as a pandigital inflammatory manifestation involving one or more tissue compartments: tenosynovitis, joint synovitis, enthesitis, soft-tissue and bone marrow oedema and erosive bone damage (1, 3–5).

Dactylitis can present as two forms: acute and tender or chronic non-tender (1–3, 5). The first is associated with increased disease activity, risk of joint damage and overall disease burden, whereas the chronic form might have less clinical impact (1, 3). Dactylitis integrates the Classification Criteria for Psoriatic arthritis (CASPAR) and is a relevant outcome of PsA associated with local erosive structural damage (6, 7).

Despite the diversity of outcome measures used to assess dactylitis activity mainly in the context of clinical research, including clinical trials, the Leeds Dactylitis Index (LDI) is becoming widely accepted as a more objective measure for determining dactylitis activity in PsA (2, 3, 8–12). The LDI is a validated instrument for assessing dactylitis that includes the measurement of the circumference of the digits, determined by a dactylometer, and the severity of pain upon palpation. The affected digit circumference is compared with the healthy contralateral digit circumference. Dactylitis is defined when a 10% difference in the ratio of the circumference of the affected digit occurs (2, 3). In the presence of bilateral dactylitis, however it is necessary to compare the obtained values with the standard references of digit circumferences of individuals without dactylitis. These data are available for the United Kingdom population (1, 13) but have not been studied in other countries, despite LDI being used in several clinical trials worldwide (9–12). Furthermore, it is also unknown if different anthropometric measures can influence the LDI score, particularly obesity, which is one of the most prevalent comorbidities (40–50%) in the PsA population (14).

The primary objective of this study was to obtain the estimated digit circumference of the Portuguese population for female and male subjects as a reference to allow for the calculation of the LDI. Secondly, we studied sex and body mass index (BMI) as variables that can influence digit circumference.

1

Clinical and Experimental Rheumatology 2024

BRIEF PAPER
Methods

Participants and clinical assessments

Healthy individuals, white race, aged between 18 and 65 years, from across mainland Portugal (north, centre and south regions) were invited to participate. The exclusion criteria included pregnancy and musculoskeletal diseases with joint involvement of fingers or toes, such as rheumatoid arthritis and osteoarthritis.

The circumferences of the ten digits of the hands and the ten digits of the feet were measured using a dactyrometer, as described by the manufacturer (3). The circumference of each finger was measured twice applying the dactyrometer around the base of the digit adjacent to the web space, and the mean of the two measurements was calculated and recorded. Then, the mean value of the two fingers, right and left side, was determined for each finger and reported here. Demographic data concerning age, sex, weight, height and previous or concomitant diseases were collected and registered.

The Ethics Committee of Centro Académico de Medicina de Lisboa approved this study (number 463/20), and informed consent was obtained from all individuals.

Statistical analysis

Continuous variables were described by mean and standard deviation. Digit circumference was studied according to sex and BMI, using Student’s t-test and One-way ANOVA, respectively. The Cohen’s d test was used to calculate sex effect size and Eta squared to calculate BMI effect size (15). Multiple linear regression was used to calculate the effect of sex and BMI, as well as their interaction, to predict digit circumference. BMI categories were considered as follows: underweight <18.5, normal weight 18.5–24.9; overweight ≥25–29.9; and obesity ≥30. SPSS v. 24 was used for statistical analysis.

Results

Fifty-nine participants (33 women, 26 men) with a mean age of 41.5±10.6 (min 20, max 62) years, mean BMI 24.8 (min 17.4, max 37.5) were included. Overall, the mean circumference of the thumb was found to be the highest (64.6±5.9 mm) on the hands but very similar to the index circumference (64.2±6.2 mm). On the digits of the foot, besides the great toe circumference (77.5±6.5 mm), the mean circumferences of the remaining digits were numerically very close (min 49.5, max 53.5 mm). For both hands and feet, men’s mean digit circumferences were statistically higher than those of women (p<0.001). Sex effect size was large in the majority of digits (-0.994<d<
Our - A ranged anthropometric measures however can vary across populations. Comparing to the reference tables of the United Kingdom population, the mean digital circumference of our sample was numerically superior, except for the men’s thumb, great toe and fifth fingers (1, 13). The reasons for the variability in comparison to the United Kingdom population may be due to constitutional differences in the digital circumferences between populations. However, we cannot exclude that these differences were influenced by the small sample size of both studies and may reflect individual variations which is a limitation from our work that requires further validation in larger populations.

The results from our work further allowed to estimate the digit circumference for males and females of different BMIs, in our population, based on the data from the regression analysis. Our data shows that in addition to sex, BMI can influence the digital circumference with a large effect size (15). This is particularly relevant as LDI is mostly applied to PsA patients that often have obesity as a comorbidity (14).

Considering that LDI is used worldwide, hand and feet anthropometric differences across populations, can impact on the definition of dactylitis and even treatment efficacy/effectiveness assessment of this PsA manifestation. A rational for assessing digit circumference in other populations is therefore herein unveiled. Estimating digit circumference for other populations could be of benefit, in particular, when participating in PsA clinical trials using LDI as an endpoint. Our work also emphasises the fact that in patients with symmetrical dactylitis, where the application of reference tables is required for the calculation of LDI, in addition to sex, BMI needs to be taken into consideration as it can influence digital circumference.

Key messages

- In PsA patients the calculation of the LDI score in the presence of bilateral dactylitis requires the use of digital circumference normative values only available according to sex for the United Kingdom population.
- Anthropometric measures however can vary across populations and impact LDI calculation.
- The mean digital circumference of the majority of digits in our sample was numerically superior comparing to the reference tables of the United Kingdom population.
- Further to sex, BMI influenced the digital circumference of healthy subjects, with a large effect size.
- A new tool that allows the calculation of the digit circumference for males and females of different BMIs was developed.

Authors’ affiliations

Acknowledgments

The authors would like to thank the Portuguese Society of Rheumatology for assistance in GO-DACT trial implementation (reference 10) which motivated this study.
References

15. LAKENS D: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 2013; 4: 863. [https://doi.org/10.3389/fpsyg.2013.00863]