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ABSTRACT
Osteoporosis is a prevalent bone dis-
ease with a relevant burden of mortal-
ity and comorbidity, especially due to 
fragility fractures occurring as a result 
of reduced bone mineral density. In this 
review we provide a critical digest of 
the most recent literature regarding the 
relationship between gut microbiota 
and osteoporosis and discuss the role 
of radiofrequency echographic multi- 
spectrometry (REMS) and machine 
learning in the diagnostic work-up and 
prevention of osteoporosis.

Introduction
Osteoporosis (OP) is a skeletal disease 
characterised by low bone mineral den-
sity (BMD) and deterioration of bone 
tissue microarchitecture. It is the most 
prevalent bone disorder in adults, espe-
cially among postmenopausal women, 
and is frequently associated with fra-
gility fractures, resulting in increased 
morbidity and mortality, in a lower 
quality of life, and in a remarkable so-
cial and economic burden (1). 
The aim of this review was to provide 
an overview of recent advances in the 
field of OP. Given the large number of 
publications, we focused on three main 
topics: the role of gut microbiota in the 
pathogenesis of OP, and radiofrequen-
cy echographic multi-spectrometry 
(REMS) and machine learning (ML) 
technologies as recently developed 
tools for the screening and diagnosis 
of OP. 
Medline databases (PubMed) were 
searched using the following keywords 
for studies published in 2022: “Gut mi-
crobiota AND osteoporosis”, “Radio 
frequency Echographic Multi Spectro-
metry”, “REMS”, “Machine Learning 
AND Osteoporosis”.

The relationship between 
gut microbiota and bone: 
do we have solid evidence?
The microorganisms that inhabit the 
human intestine are known as the gut 
microbiota, and their collective ge-
nome is called gut microbiome. The 
gut microbiota consists of over 10–100 
trillion microbes (bacteria, archaea, vi-
ruses, fungi, protozoa and eukaryotes; 
their density and composition vary 
throughout the intestinal tract, the co-
lon harbouring the most) that encode 
more than 3.3 million genes (2, 3). 
Firmicutes and Bacteroides phyla rep-
resent more than 90% of the intestinal 
microbiota (4). It has been well rec-
ognised that this enormous symbiotic 
population has multiple local effects, 
such as enhancing the extraction of en-
ergy from foods, increasing absorption 
of nutrients, helping in immune system 
development, and preventing the colo-
nisation and invasion by pathogens. In 
addition to these local effects, it has 
been recently supposed that the gut mi-
crobiota may play a role in the system-
ic regulation of some physiological and 
pathological processes related to hu-
man health. For example, short-chain 
fatty acids (SCFAs) are metabolites of 
dietary fibres and are produced by mi-
crobiota in the large intestine; SCFAs 
seem to exert numerous effects such 
as improving calcium absorption, sup-
pressing appetite, improving glucose 
tolerance, and affecting pro- and anti-
inflammatory properties of immune 
cells. Microbiota has been reported 
also to influence the disease activity in 
some rheumatic conditions (5-7). Re-
cent studies on animal models have re-
ported that the gut microbiota may also 
contribute to the regulation of bone 
metabolism, which ignited enthusiasm 
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about the possibility of preventing bone 
loss by modulating the gut microbiota 
and even treating OP by mean of fecal 
microbiota transplantation (8). It is be-
yond the scope of this chapter to ana-
lyse the multiple mechanisms by which 
this may happen: the reader can find ex-
tensive reviews published in 2022 that 
examined the suggested connections 
between the gut microbiota and bone 
tissue (9-16). Despite hundreds in vitro 
or animal studies illustrating an influ-
ence of the gut microbiota/microbioma 
on the skeleton, there are few studies 
involving humans. Therefore, the aim 
of this chapter is to provide a brief 
report on human studies published in 
2022 which investigated the relation-
ship between gut microbiota and bone, 
and to summarise their results in syn-
thetic conclusion remarks. 

Knowledge to date: 
human studies
The study that first examined the ef-
fects on bone of a probiotic was pub-
lished by Nilsson in 2018 (17). In 
this proof of concept, double-blind, 
placebo-controlled study, women 
(mean age 76 years) with low BMD 
were randomised to receive orally 1010 
colony-forming units of Lactobacil-
lus Reuteri 6475 daily or placebo for 
12 months. Those receiving the probi-
otic supplement had a reduced loss of 
volumetric BMD at the tibia (assessed 
by high-resolution peripheral quantita-
tive computed tomography) compared 
to those receiving placebo: mean rela-
tive change -0.83% (95% CI -1.47% to 
-0.19%) vs. -1.85% (95% CI -2.64% 
to -1.07%). Furthermore, the same au-
thors in 2022 (18) investigated factors 
that could influence the response to the 
probiotic. They selected 20 women with 
the highest changes (good responders) 
and 20 with the lowest changes (poor 
responders) in the tibial BMD from the 
previous study and characterised the gut 
microbiome composition and function 
as well as serum metabolome in both 
groups. They found that gene richness 
of the gut microbiota was significantly 
higher (p<0.01) and inflammatory state 
was significantly improved (p<0.05) in 
the good responders at the end of the 
12-months daily supplementation. In 

particular, the good responder group 
to Lactobacillus Reuteri showed de-
creased levels of serum inflammation 
marker ultrasensitive C-reactive pro-
tein, which has been reported to be as-
sociated to higher BMD (19, 20). More-
over, detrimental changes observed in 
the gut microbiota of poor responders, 
including the enrichment of E.Coli and 
its biofilm formation, were lessened in 
the good responders to L. Reuteri; and 
several SCFAs-producing bacterial spe-
cies, including C. Acetobutylicum, A. 
Fermentans, A. Muciniphila, C. Catus 
and R. Bicirculans were more abundant 
in the good responder group than in the 
poor responder group at 12 months. In 
summary, L. Reuteri supplementation 
could prevent a deterioration of the gut 
microbiota and inflammatory status, 
which may explain the small but signifi-
cant effect reported on bone density.
SCFAs could influence bone forma-
tion. This has been suggested by a 
study (21) that investigated whether 
SCFAs are absorbed by osteoblasts and 
influence early osteoblastic differentia-
tion using a pre-osteoblast murine cell 
line. In that model, acetate and propi-
onate upregulated the osteoblast differ-
entiation marker alkaline phosphatase; 
acetate also regulated alkaline phos-
phatase mRNA expression. If these re-
sults were confirmed in human studies, 
acetate and propionate could be useful 
for promoting bone formation.
The positive effects of Lactobacilli 
probiotics on bone were confirmed by 
other randomised, double-blind, place-
bo-controlled studies in humans (22-
24). However, non-significant changes 
in bone density were observed in an-
other RCT comparing probiotics to pla-
cebo (25).
In 2022, Orwoll et al. (26) published 
the results of a study aimed at examin-
ing the associations of the fecal micro-
biome with measures of bone density, 
microarchitecture, and strength. They 
obtained stool samples from 831 parte-
cipants in a longitudinal observational 
large study of community dwelling old-
er men, aged 78 to 98 years; they per-
formed 16S rRNA amplicon sequenc-
ing and tested for association between 
the abundance of microbial genera and 
bone measures obtained with dual-ener-

gy x-ray absorptiometry and high-reso-
lution peripheral quantitative computed 
tomography (at distal radius, distal 
and diaphyseal tibia). The abundance 
of 4 bacterial genera were found to be 
weakly associated with the bone pa-
rameters selected (false discovery rate 
≤0.05): Anaerofilum (with lower radial 
and tibial density), Methanomassiliico-
ccus (greater distal cortical porosity), 
Ruminocclostridium 9 (with less distal 
tibial cortical porosity), and Tyzzerella 
(with greater tibial density measures). 
Also, Lactobacillus and Streptococcus 
were both associated with worse bone 
measures at radial and tibial sites, but 
only when a less strict criterion (false 
discovery rate ≤0.1) was adopted. As 
the Authors themselves recognise, 
these results must be interpreted with 
caution: the magnitudes of associations 
were not large, functional follow-up 
of the association is lacking, statistical 
power is low, findings relative to Lac-
tobacillus are in contrast with previous 
findings. We find appropriate the au-
thors’ conclusion that “larger cohorts of 
men and women over wider age ranges 
and/or more causally incisive methods” 
are needed. An editorial about the study 
of Orwoll brilliantly lists the difficulties 
in conducting down-to-earth studies in 
this field (27).
Among the many molecules derived 
from gut microbiota that may influence 
human health, trimethylamine N-oxide 
(TMAO) may adversely affect bone 
health by inducing oxidative stress 
(28). To test this hypothesis, Elam et al. 
(29) assessed TMAO plasma levels and 
hip fractures incidence during up to 26 
years of follow-up in 5019 adults aged 
≥65 years; total hip BMD was assessed 
by dual-energy x-ray absorptiometry in 
a subset of patients (n=1400). TMAO 
was not significantly associated with 
hip fracture: after controlling for co-
variates, hazard ratios per TMAO dou-
bling were 1.00 (95% CI 0.92, 1.09) in 
women and 1.12 (0.95–1.33) in men. 
TMAO was also not associated with to-
tal hip BMD. These results are sharply 
in contrast with previous small longitu-
dinal, cross-sectional, or retrospective 
studies (30-32).
The relationship between gut micro-
biota and bone is far from being clari-
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fied. We eagerly await the results of 
the Prune study (33), a randomised 
controlled trial that assessed the ef-
fects on bone density, bone structure 
and strength of a 12-month daily prune 
consumption in postmenopausal wom-
en, which has the potential of manipu-
lating the gut microbiota.

Take-home messages
•	 The gut microbiota may influence 

the bone (8-16).
•	 Probiotic supplementation may at-

tenuate bone loss in postmenopausal 
women, but larger and long-term 
studies are needed (18-20).

•	 To date, large studies failed to find a 
sound relation between gut microbi-
ome or its products and bone density 
or fractures. Currently there is no 
scientific basis to include gut micro-
biota modifications in our treatment 
strategy of OP (29-32).

Radiofrequency echographic 
multi-spectrometry (REMS): 
overcoming the limits of DXA scan
Dual-energy x-ray absorptiometry 
(DXA) scan at the femur and lumbar 
spine has traditionally been the gold 
standard method for the diagnosis of 
OP (34). Despite being widely avail-
able and providing high precision and 
reproducibility, DXA scan presents 
several limitations, most importantly 
the use of x-rays and the overestimation 
of BMD in patients with spinal osteo-
arthritis, previous vertebral fractures, 
or aortic calcifications (35), potentially 
resulting in misdiagnosis and under-
treatment. A recent breakthrough in this 
regard is represented by REMS, which 
is a radiation-free tool analysing native 
ultrasound (US) waves acquired at lum-
bar vertebrae and/or femur. In contrast 
with conventional ultrasonography, 
REMS analyses native unfiltered US 
waves, thereby providing comprehen-
sive information related to bone qual-
ity and quantity and obtaining T- and 
Z-scores through the comparison with 
age-, sex-, BMI- and site-matched ref-
erence curves created for healthy and 
pathologic bone tissue. REMS has been 
validated in mono- and multicentric 
studies as a tool for the diagnosis of OP 
(36-38), and it was demonstrated that 

it had a higher sensitivity than DXA in 
the detection of female subjects prone 
to fragility fractures in a follow-up 
period of 5 years (39). Furthermore, it 
was demonstrated that T-scores at the 
lumbar spine obtained through REMS 
in patients with osteoarthritis (OA) 
are significantly more reliable for the 
detection of OP in this category of pa-
tients, as compared to DXA scan (40). 
An Italian study published in 2022 sup-
ported these findings by showing that in 
a cohort of 159 postmenopausal women 
(66.211.6 years) with previous vertebral 
fractures or lumbar spine OA, REMS 
classified as “osteoporotic” a larger 
percentage of patients with respect to 
DXA (35.1% vs. 9.3%, respectively, 
in the OA subjects; 58.7% vs. 23.3%, 
respectively, in the subjects with frac-
tures) (41). Therefore, the capability 
to overcome artifacts such as OA and 
fractures, along with the absence of ra-
diation and reduced costs, may lead to 
the use of REMS in general population 
screenings (37). Indeed, REMS can be 
employed even in subsets of patients 
for which DXA is not recommended, 
e.g. pregnant women, breast-feeding 
women and children (42). For instance, 
in an exploratory Italian prospective 
observational study using REMS on 78 
pregnant women with uncomplicated 
pregnancy at 39.1±1.5 weeks have 
been found to have significantly lower 
femoral neck BMD values compared to 
a matched control group of non-preg-
nant women (0.769±0.094 g/cm2 vs. 
0.831±0.101 g/cm2, p=0.0001), show-
ing that REMS may be used to monitor 
pregnant women with OP or related risk 
factors (43).
Recently, REMS has been evaluated on 
patients with diseases increasing the 
risk for OP and fragility fractures. A 
study by Fassio et al. showed a prom-
ising agreement (Cohen’s κ correlation 
coefficient 0.663, p<0.01) between 
DXA- and REMS-derived BMD val-
ues for the worst site considered and 
in the consequent fracture risk assess-
ment in a group of 41 patients affected 
by chronic kidney disease (CKD) re-
ceiving peritoneal dialysis (44). A re-
cent study involving 90 female patients 
with type 2 diabetes mellitus (T2DM) 
showed that REMS was more reliable 

than DXA at diagnosing OP in this 
population (47% vs. 28%, respective-
ly). Furthermore, lower values of BMD 
at the lumbar spine by REMS were sig-
nificantly associated with a history of 
major fragility fractures in the T2DM 
population, whereas BMD by DXA 
were not (45). Another study found that 
in a cohort of 50 patients with anorexia 
nervosa, the subjects with previous 
vertebral fragility fractures presented 
lower values of BMD at total hip and 
lumbar spine by DXA and by REMS 
with respect to those without history of 
fractures; however, the difference was 
significant only for BMD at total hip as 
measured by REMS (46). However, it 
should be stated that there have been 
cases for which REMS was not as ac-
curate as in the previously mentioned 
studies. For example, Lalli et al. as-
sessed the accuracy of REMS in com-
parison with DXA in disuse-related 
OP in patients with spinal cord injury 
and found that REMS overestimated 
BMD at femoral neck and total hip in 
this category of patients, possibly due 
to the atrophy and myosteatosis of the 
iliopsoas muscle which may influence 
the ultrasound propagation between the 
probe and the femoral neck. However, 
the low number of patients warrant 
larger studies for confirmation (47).
Considering the high incidence of fra-
gility fractures in the general popula-
tion aged over 50 and the consequent 
significant economic burden for the 
healthcare systems (48), an accurate 
estimation of fracture risk is crucial 
and widely used tools in clinical prac-
tice for this purpose include FRAX, 
Garvan, QFracture, Fra-HS and De-
FRA (49). REMS has been employed 
for the development of another tool, 
called the Fragility Score (FS), which 
has been shown to have slightly better 
performance than DXA in discrimi-
nating patients with previous fractures 
(50). Interestingly, a prospective study 
involving 1989 patients recently dem-
onstrated that FS is more capable of 
predicting fracture risk in both female 
and male subjects as compared to BMD 
T-score values obtained by either DXA 
or REMS (area under the curve (AUC) 
for lumbar spine adjusted for age and 
BMI: FS 0.715 vs. REMS BMD T-score 
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0.636, p=0.02, and vs. DXA BMD T-
score 0.603, p=0.001; AUC for femur 
adjusted for age and BMI: FS 0.735 vs. 
REMS BMD T-score 0.568, p=0.05, 
and vs. DXA BMD T-score 0.472, 
p=0.0003). Furthermore, major osteo-
porotic fracture risk estimation by FS is 
provided over a 5-year period, as com-
pared to the longer 10-year timeframe 
covered by tools such as FRAX (51). 

Take-home messages
•	 REMS is a portable and radiation-

free tool which has shown high ac-
curacy in the diagnosis of OP. As 
opposed to DXA, REMS allows the 
diagnosis of OP in patients with lum-
bar spine OA, vertebral fractures, 
and extensive aortic calcifications 
(38, 40).

•	 REMS proved excellent in cohorts 
of patients with CKD (44), T2DM 
(45), and anorexia nervosa (46). Fur-
ther studies are required to assess its 
accuracy in patients with disuse-re-
lated OP related to spinal cord injury 
(47).

•	 The REMS-based Fragility Score 
(FS) is a reliable indicator for the es-
timation of major osteoporotic frac-
ture risk over a 5-year period (50-51).

Use of machine learning tools 
for the diagnosis and prevention 
of osteoporosis
Machine learning (ML) is a scientific 
discipline that focuses on how comput-
ers learn from data and become capa-
ble of building statistical models from 
massive datasets (52). ML technolo-
gies have recently demonstrated that 
they can also play a major role from a 
clinical perspective (53-55). Such tech-
nologies allow the creation of predic-
tive models (e.g. logistic regression, 
artificial neural networks, eXtreme 
gradient boosting, support vector ma-
chine, stacking, random forest) which 
can be used to predict any range of out-
puts. Conventionally, ML is classified 
into supervised learning and unsuper-
vised learning. The former approach is 
generally used for estimating risk and 
for creating automated models useful 
for interpreting instrumental examina-
tions (e.g. evaluations of an EKG or a 
lung computed tomography), whereas 

the latter is used to search for the pres-
ence of specific patterns within a large 
amount of data (52). The advantages of 
ML include the ability to analyse dif-
ferent types of data and its potential for 
time- and cost-effectiveness (56-57). 
In the medical literature, these tools 
have been used in various fields, e.g. 
to predict renal flares occurrence after 
5 years of remission in patients with 
lupus nephritis, to describe phenotypes 
of extra-renal flares (58-59) and radio-
graphic progression in axial spondy-
loarthropathies (60), and for genomic 
classification or subtyping in oncology 
(61).
As previously mentioned, DXA scan 
is currently the most widely used tool 
for assessing fracture risk and diagnos-
ing OP, and algorithms such as FRAX 
or DeFRA efficiently estimate fracture 
risk (62-65). However, these conven-
tional tools consider a limited number 
of variables and are used indiscrimi-
nately for all patients, often not al-
lowing a weighted risk estimation for 
different subgroups of diseases (66). 
Interestingly, ML techniques have been 
recently investigated for the estimation 
of fracture risk and for the diagnosis 
of OP from other imaging tools per-
formed by the patient for other reasons.
For example, in the work of Jang et 
al., the deep learning model “OsPor-
screen” was trained in a supervised 
learning manner to recognise OP 
through retrospective analysis of chest 
radiographs, yielding promising re-
sults. A total of 13,026 chest x-rays and 
DXAs of individuals between 40 and 
90 years of age were analysed, equally 
divided between “osteoporosis”, “os-
teopenia” and “normal findings”. The 
model was first trained to recognise 
osteoporosis patients belonging to the 
“Health Screening and Promotion Cen-
tre of Asan Medical Centre” cohort and 
was subsequently externally validated 
with the “Asan osteoporosis cohort 
dataset”. The ML model was shown to 
analyse an x-ray in less than 4 seconds 
with a sensitivity of 86.2% and speci-
ficity of 74.2% in recognising OP in the 
external validation. This study supports 
the use of the “OsPor-screen” model as 
a cost-effective method for opportun-
istic automated screening of patients 

with OP in clinical settings and without 
exposing the patient to additional ra-
diation (67). Similar studies found that 
ML models were capable of screening 
for OP based on the analysis of lum-
bosacral spine and hip radiographs or 
orthopantomography (68-70). In fact, 
the presence of OP is often reported 
by the radiologist as a collateral find-
ing on radiographs, thus being subject 
to interindividual variability. A similar 
problem occurs for the estimation of 
vertebral fractures with Genant semi-
quantitative method; in this regard, ML 
technologies are also useful in the crea-
tion of automated screening tools for 
vertebral fracture assessment and iden-
tification of risk factors for refractures 
(71-72). Indeed, the decision-tree-
based model “LightGBM” designed by 
Microsoft Research Asia to clarify the 
relevant characteristics that determine 
refracture after surgically treated fra-
gility fractures has been employed in 
a study involving 7000 patients, iden-
tifying rheumatoid arthritis (RA) and 
CKD as potential predictors of refrac-
ture. In fact, in the study of Shimizu et 
al., the “LightGBM” model was shown 
to be moderately accurate in predicting 
refractures, with an AUC of approxi-
mately 0.75. Furthermore, when com-
pared to other ML models such as Ar-
tificial Neural Networks, “LightGBM” 
achieved a higher accuracy, suggesting 
the superiority of decision-tree-based 
models trained on table data, in this 
clinical context (72). ML models have 
also been tested in the context of op-
portunistic OP screening on images 
obtained from computed tomography 
(CT) scans of the chest and abdomen, 
demonstrating high specificity and sen-
sitivity for OP assessment. Besides, it 
is also possible to integrate data from 
CT images with OP risk factors and 
routine laboratory tests data to build a 
hierarchical model to identify individu-
als with OP, as an alternative method 
to DXA. Liu et al. proposed a hierar-
chical model with three layers: a first 
layer consisting of only demographic 
characteristics, a second layer with 
only clinical data, and a third layer of 
CT images that partially or completely 
included the spine. Data of 2210 pa-
tients over age 40 were collected ret-
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rospectively, then six ML algorithms 
were used as classifiers to discriminate 
individuals between osteoporotic and 
non-osteoporotic; the results showed 
that the hierarchical model based on 
logistic regression had better perfor-
mances, with an area under the receiver 
operating characteristic curve of 0.818, 
0.838 and 0.962 for the three layers, re-
spectively (73-74).
ML technologies can also be employed 
for the interpretation of complex and 
multifaceted information, such as that 
provided by high resolution peripheral 
quantitative computed tomography 
(HRpQCT), an imaging technique as-
sessing trabecular and cortical micro-
structure of bone (75). In the work of 
Lu et al., an automatic high-perfor-
mance diagnostic algorithm was pro-
posed; it used various inputs (clinical 
data, bone mineral density measured at 
the femoral neck, and data from HR-
pQCT images of the tibia) to discrimi-
nate between patients with or without 
previous fragility fractures (76). The 
amount of information provided by 
HRpQCT, together with the compu-
tational capability of ML methods, 
allowed the identification of bone mi-
croarchitecture phenotypes. Whittier 
et al. employed “fuzzy c-means clus-
tering”, an unsupervised ML method, 
which was able to identify three differ-
ent clusters of bone microarchitecture: 
low-density, low-volume and healthy 
bone. Bone phenotypes were identified 
using cluster analysis and character-
istics selected for clustering included 
height (value used as a surrogate for 
long bone length) and some HR-pQCT 
parameters measured at the radius and 
ulna. According to the authors, the 
low-density and low-volume pheno-
types were those most associated with 
fragility fractures with a hazard ratio 
of 2.96 and 2.95, respectively. There-
fore, this study suggests the utility of 
deep learning in assessing fracture risk 
associated with intrinsic phenotypic 
characteristics of bone, which DXA is 
unable to capture (77).
ML techniques are also useful in pre-
dicting the fracture risk of certain 
subpopulations of patients, such as in 
the case of elderly-onset RA (EORA) 
or breast cancer. For example, it has 

been shown that especially the random 
forest classifier model can accurately 
predict the occurrence of fractures in 
patients with RA and OP. In addition, 
Ji et al. constructed three models to 
predict OP, fragility fractures and sur-
vival in breast cancer patients, showing 
superiority over the FRAX and OSTA 
(Osteoporosis Self-assessment Tool for 
Asians) algorithms and thus identify-
ing a new approach for screening this 
population at risk (78-79).
In conclusion, in the scientific litera-
ture, studies related to ML in the con-
text of OP are increasing in number and 
depth, suggesting a growing interest in 
this field. The progressive refinement 
of ML technologies will hopefully al-
low their use in the daily clinical evalu-
ation of the OP patient.

Take-home messages
•	 Machine Learning (ML) has emerged 

as a powerful tool in the clinical set-
ting for creating predictive models 
that can be used to analyse different 
types of data. Relevant advantages 
include time- and cost-effectiveness 
(53-57).

•	 ML techniques are being used for 
the diagnosis and estimation of frac-
ture risk in osteoporosis, and can 
use information from instrumental 
examinations already performed, 
providing a non-invasive method for 
screening and early detection of the 
disease (67-70).

•	 ML models are useful for automated 
screening tools for vertebral fracture 
assessment and identification of risk 
factors for refractures. Decision-tree-
based models have been used for the 
prediction of refractures, as demon-
strated by the “LightGBM” model. 
ML models can also be tested for 
opportunistic osteoporosis screening 
on images obtained from CT scans of 
the chest and abdomen (71-74).
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