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IL-17-producing cells in ankylosing spondylitis patients 
show gender-based differences in gene expression
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Abstract 
Objective

Gender has been shown to impact disease expression in ankylosing spondylitis (AS) and Th17 cells play a key role in 
AS pathogenesis. To better understand what Th17-associated immune pathways are different between men and women, 

we compared the transcriptome of IL-17-enriched peripheral blood mononuclear cells (PBMCs) in male and female 
AS patients, with a particular focus on inflammatory cytokine genes.

Methods
PBMCs were collected from 10 female and 11 male AS patients at the Clinical Research Unit of MetroHealth Medical 

Center. IL-17-enriched PBMCs were isolated and stimulated with CytoStim. RNA-sequencing (RNA-seq) was performed 
on the samples, and the data were analysed using iPathwayGuide. Inflammatory markers and genes related to Th17 

differentiation and function were identified based on previous studies.

Results
RNA-seq identified 12,893 genes with 2,851 genes with p-values <0.05 with distinct patterns of gene expression 
between male and female AS patients. TGF-β, PGE2, and S100 proteins were significantly upregulated in males. 

Levels of IL-12B, a Th17 inducer, were lower in males compared to females. Additionally, receptors of IL-6, 12, 23, 
TGF-β, and PGE2 were downregulated in males, except for IL-17RC, which was upregulated. Genes involved in 
Th17 differentiation showed differential expression between genders, with elevated expression of BATF, SOCS1, 

NKD2, and ARID5A in men and decreased expression of FOXO1. 

Conclusion
Transcriptomic analysis revealed that male AS patients exhibit distinct expression patterns of IL-17 pro-inflammatory 

genes, which may contribute to the phenotypic differences observed between genders in AS.
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Introduction
Axial spondyloarthritis (axSpA) is 
a chronic inflammatory disease that 
predominantly involves the spine and 
sacroiliac joints, but may involve pe-
ripheral joints as well (1). The char-
acteristic features of the disease are 
chronic back pain (CBP), peripheral 
joint arthritis, enthesitis, dactylitis, and 
extra-articular manifestations, includ-
ing inflammatory bowel disease (IBD), 
psoriasis and acute anterior uveitis (2). 
Estimated prevalence of axSpA in the 
United States stands at 0.9–1.4% (3-6). 
Depending upon the presence of radio-
graphic sacroiliitis, axSpA is divided 
into radiographic axSpA (r-axSpA), or 
non-radiographic axSpA (nr-axSpA).
Gender has been shown to impact dis-
ease expression. Most autoimmune 
diseases predominantly affect females, 
indicating a female bias (7-10). How-
ever, the opposite is seen in AS which is 
historically considered a disease of men 
with male to female ratio of 3:1 and 
has a strong association with HLA-B27 
(7, 9). Men with AS are more likely 
to develop axial involvement and ra-
diographic joint damage (11-14), while 
women have delayed onset of disease 
(11, 12, 15), higher symptomatic bur-
den (16, 17), more peripheral manifes-
tations of axSpA such as arthritis and 
enthesitis (18), slower progression of 
structural damage (15, 17, 19) and de-
layed response to treatment (16). Un-
like r-axSpA, there is only few sex dif-
ferences in patient characteristics and 
prevalence in nr-axSpA, and recent dif-
ference reported include significantly 
lower response rate to TNF inhibitors 
in women than in men (20). The IL-
23/IL-17 axis has emerged as a critical 
pathway in the pathogenesis of spon-
dyloarthritis and new biologic thera-
pies are being developed to target this 
pathway (21, 22). IL-23 signalling pro-
motes CD4+ Th17 cell differentiation, 
resulting in increased IL-17A produc-
tion (22). IL-17A is a member of IL-17 
cytokine family that includes IL-17A-F, 
with a role of IL-17A and IL-17F im-
plicated in the pathogenesis of inflam-
mation (22, 23). IL-17A-F activate 
pathways which lead to transcriptional 
upregulation and release of proinflam-
matory cytokines such as IL-1β, IL-6, 

GM-CSF, G-CSF, and tumor necrosis 
factor alpha (TNF-α), chemokines, 
antimicrobial peptides, and tissue ma-
trix metalloproteinases (24, 25). How-
ever, inhibitors of IL-23, IL-12, or IL-6 
failed to show clinical efficacy in AS 
(25-28), suggesting that the IL-17 pro-
duction in AS may be independent of 
IL-23. Interestingly, IL-17 pathway has 
been highlighted as one of the key dif-
ferences in both immunologic and gene 
expression patterns of men and women 
with AS (29). Men with AS, but not 
women, were found to have higher lev-
els of IL-17A and Th17 cells in periph-
eral blood than healthy controls (30, 
31). Additionally, men with AS have 
higher circulating levels of TNF-α and 
IL-18, while women had significantly 
higher levels of IL-6 in the peripheral 
blood (30, 32). Male patients with AS 
also showed alterations in gene expres-
sion compared with healthy controls 
that were not observed in female pa-
tients AS, such as up-regulation of im-
mune sensors, autophagy-related genes, 
myeloid-associated genes, and certain 
proteases (ADAM8, CTSA, and CTSB), 
but downregulation of lymphocyte-
regulating genes such as CD7, SKAP1, 
SLAMF6, and SH2D1A (29). 
To better understand what Th17-associ-
ated immune pathways are implicated 
in the phenotypic difference between 
men and women, we proposed that 
mRNAs are differentially expressed in 
IL-17-producing cells between males 
and females with AS and that dispa-
rately regulated genes in males and 
females subsequently contribute to the 
difference in disease phenotype. We 
thus compared the transcriptome of 
IL-17-enriched PBMCs in male and fe-
male AS patients in this study.

Materials and methods
Patient recruitment, demographics, 
and disease activity
The patients and healthy controls con-
sented to participate, and the study 
was approved by the Institutional of 
Research Ethics Board at MetroHealth 
Medical Center in Cleveland, Ohio. 
All parts of research were performed 
in accordance with relevant guidelines/
regulations including the Declaration of 
Helsinki. Inclusion criteria for the study 



1059Clinical and Experimental Rheumatology 2024

Gender differences in IL-17-producing cells in AS / C.M. Lee et al.

participants included being ≥18 years 
of age with radiographic sacroiliitis as 
defined by the modified New York clas-
sification criteria for AS (33). Patients 
with history of (i) malignancy in the last 
5 years; or (ii) other rheumatic autoim-
mune diseases; and/or (iii) chronic viral 
infections like hepatitis B and hepati-
tis C and HIV were excluded from the 
study. Patients were matched for age 
and sex with healthy controls (hospital 
staff and volunteers) with no medical 
or autoimmune conditions. Twenty-one 
patients (11 males and 10 females) and 
8 controls (4 males and 4 females) were 
consecutively recruited and included in 
the study, and PBMCs (5 ml) were col-
lected. At the baseline visit, data col-
lected included demographics (age, sex, 
weight, and height), HLA-B27 status. 
The disease-specific patient-reported 
outcomes (PRO) used were the Bath 
Ankylosing Spondylitis Disease Activ-
ity Index (BASDAI) (34) and the Bath 
Ankylosing Spondylitis Functional In-
dex (BASFI) (35). Patient’s global as-
sessment (PGA) was determined by ask-
ing the patients to consider their disease 
activity in the past 48 hours. Routine as-
sessment of patient index data 3 (RAP-
ID3) scores was calculated as the sum of 
the three rheumatoid arthritis (RA) core 
data set measures: physical function 
(FN), pain, and a patient global estimate 
(PATGL) (36, 37). Physician Global Im-
pression (PGI) was determined by the 
treating rheumatologist. HLA -B27, and 
C-reactive protein (CRP) were meas-
ured using routine laboratory methods. 
Erythrocyte sedimentation rate (ESR) 
was calculated by the local lab, and was 
used to determine Ankylosing Spondy-
litis Disease Activity Score with ESR 
(ASDAS-ESR) (38, 39). Information re-
garding the presence or history of uveitis 
as well as on the use of TNF blockers 
were obtained from the electronic medi-
cal record (EMR), and the collected data 
were recorded in RedCap database at 
MetroHealth Medical Center.

IL-17 secretion assay - 
cell enrichment and detection
PBMCs (30 ml) were obtained in the 
Clinical Research Unit at MetroHealth 
Medical Center using BD Vacutainer 
CPT Cell Preparation tubes. The PB-

MCs obtained were stimulated with 
CytoStim for 4 hours (Miltenyi Biotec 
GmbH, Bergisch Gladbach, Germa-
ny). After stimulation, the cells were 
processed through the interleukin IL-
17-phycoerythrin (PE) cytokine secre-
tion assay enrichment kit (Miltenyi Bio-
tec) as per manufacturer’s instructions. 
The IL-17 positive cells were counted 
and verified for high expression levels 
of IL-17 by RT-PCR, and total RNA 
was extracted as per Takara kit (Takara 
Biotech, Japan). 

Next generation RNA-sequencing 
Changes in mRNA expression were 
identified using next generation RNA-
seq. RNA-seq projects were carried out 
as follows: total RNA extraction, sam-
ple quality control (QC) test, library 
preparation, sequencing by synthesis, 
and bioinformatic analysis. To proceed, 
500 ng of RNA from each sample was 
sent to Novogene Bioinformatics for 
sequencing. These data were analysed 
in the context of pathways obtained 
from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (Re-
lease 96.0+/11-21, Nov 20) (40, 41), 
gene ontologies from the Gene Ontol-
ogy Consortium database (2020-Oct14) 
(42, 43), miRNAs from the miRBase 
(MIRBASE version: v. 22.1,10/18) 
and TARGETSCAN (Targetscan ver-
sion: Mouse:7.2, Human:7.2) databases 
(44-49), network of regulatory relations 
from BioGRID: Biological General 
Repository for Interaction Datasets v. 

4.0.189. Aug. 25th, 2020 (50), chemi-
cals/drugs/toxicants from the Com-
parative Toxicogenomics Database 
July 2020 (51), and diseases from the 
KEGG database (release 96.0+/11-21, 
Nov 20) (40, 41). 

Statistical analysis
The RNA-seq data were analysed us-
ing Advaita Bio iPathwayGuide (52), 
and relative fold (logFC) was calcu-
lated using female AS patient values as 
baseline. Genes were identified using a 
threshold of 0.05 for statistical signifi-
cance (p-value) using false discovery 
rate (FDR)-adjusted p-values by Ben-
jamini-Hochberg correction, and with 
absolute log fold change of at least 0.6. 
Proinflammatory cytokines and genes 
involved in Th17 differentiation, signal-
ling, and function were identified and 
assessed based on prior Th17 transcrip-
tome studies using human cells (53-56). 
Heat maps were generated with Clust-
Vis (57). Where appropriate, two-tailed 
student t-test was used to compare two 
means, and p-values were calculated 
using the GraphPad QuickCalcs Web 
site: http://www.graphpad.com/quick-
calcs/ConfInterval1.cfm (accessed May 
2022). The results are presented as fre-
quency (%) or mean with standard devi-
ation (SD). One-way ANOVA followed 
by Tukey’s multiple comparisons test 
and two-tailed t-tests were performed 
using GraphPad Prism Software v. 9.0.0 
for Windows, GraphPad Software, San 
Diego, California USA. 

Table I. Demographics and disease activity in the patient cohort. 

Parameters  Female (n=9)  Male (n=11)  p-value 
   Mean ± SD  Mean ± SD  (two-tailed) 

Race  7W, 2AA  10W, 1AA   
Age  49.78 ± 17.04  45 ± 13.16   0.49 
HLA-B27+ (n)  67%  (6)  82%  (9)   
Uveitis (n)  33%  (3)  55%  (6)   
TNF inhibitor (n)  56%  (5)  45%  (5)   
BASDAI  3.69 ± 3.03  3.00 ± 2.14  0.56 
BASFI  3.10 ± 2.23  3.58 ± 2.55  0.66 
ASDASESR  2.89 ± 1.12  2.29 ± 1.16  0.26 
Rapid 3   9.59 ± 8.14  10.07 ± 6.87  0.89 
Patient Global  3.44 ± 3.17  4.18 ± 3.25  0.62 
Physician Global  3.89 ± 3.48  4.09 ± 2.95  0.89 
ESR  29.5 ± 15.44  18.91 ± 15.67  0.15 
CRP (mg/dL) 0.6 ± 0.1 (n=7) 1.5 ± 1.6 (n=8) 0.16
       
ASDAS-ESR: Ankylosing Spondylitis Disease Activity Score; BASDAI: Bath Ankylosing Spondylitis 
Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Functional Index. W: White; AA: Afri-
can American. p-value (two-tailed) by unpaired t-test using mean, SD, and sample size (n).
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Results
Male and female patients with AS: 
baseline characteristics and AS 
disease severity
In this pilot study, 9 female patients and 
11 male patients with AS were included 
in the final analysis. The mean age of 
females at the time of diagnosis was ap-
proximately 50 years, while in males it 
was 45 (Table I). Four female and four 
male controls included were matched 

by gender, race, and age. The mean 
age of the 8 controls were 51±9.1 and 
consisted of 6 white, one subject self-
identified as White-Hispanic, and one 
as of African-American origin. Consist-
ent with previous findings (5, 58, 59), 
more men were positive for HLA-B27 
(82% vs. 67% in women) and higher 
proportion of men had uveitis (55% vs. 
33% in women) (60, 61). However, in 
our study cohort, women did not have 

a significantly higher burden of disease 
by validated questionnaires that assess 
disease, functional activity and PRO in 
AS, and were more likely to be treated 
with TNF inhibitor (56% vs. 45%).

IL-17-expressing PBMCs in male
and female AS patients demonstrate 
differential gene expression
Principal component analysis (PCA) of 
PBMCs enriched for IL-17 in healthy 

Fig. 1. RNA-seq analysis 
of peripheral blood mono-
nuclear cells (PBMCs) from 
healthy and ankylosing spon-
dylitis (AS) patients which 
were enriched for IL-17 ex-
pression. 
A: Principal Component 
Analysis (PCA) of healthy 
control and AS patients by 
gender. 
B: Heatmap of total gene 
analysis. 
n=4 per gender group for 
healthy controls, n=9 of AS 
female and n=11 of AS male 
patients were included in the 
analysis, using AS female 
values as baseline. The PCA 
and Heatmaps were generated 
with ClustVis publicly avail-
able from https://github.com/
taunometsalu/ClustVis
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controls (n=4 per female and male) and 
AS patients (n=9 in female and n=11 
in male) (Fig. 1A) revealed that male 
patients with AS show more drastic 
difference in gene clusters in the dis-
eased state compared to that of healthy 
controls, while female patients with AS 
showed little change in the overall gene 
expression pattern between healthy ver-
sus diseased state. This could be more 
visualised in the heatmap of significant-
ly upregulated or downregulated genes 
comparing healthy and AS groups, 
subcategorised by gender (Fig. 1B). 
The transcriptomics analysis was done 
using raw data from Novogen Bioin-
formatics, and no genes were removed 
from the analysis. Using the iPathway 
software, various pre-set biological 
processes, pathways, and cellular func-
tions were explored, but this approach 
did not reveal notable differences be-
tween male versus female subjects. 
However, looking at the whole gene set 
globally, male and female patients with 
AS seemed to have a distinct pattern 
of IL-17-associated gene expression. 
This was consistent with previous find-
ing which showed that female patients 
with AS had relatively few uniquely 
expressed genes (30). This included 
upregulation of genes involved in adhe-
sion, vacuole/autophagy, myeloid cell, 
wound healing/coagulation, osteoclast 
differentiation, and MAPK signalling 
pathways, and downregulation of genes 
involved in protein translation and ri-
bosome-related pathways (30). In the 
current analysis, we demonstrate that 
in addition to the baseline higher fre-
quency of IL-17-expressing cells and 
expression of IL-17A (30), the gene ex-
pression pattern of PBMCs themselves 
enriched for IL-17 is also distinct. 

IL-17-expressing PBMCs in male vs. 
female AS patients show differential 
expression of TGF-β, PGE-2, and 
S100 proteins and may express higher 
levels of Th17 differentiation genes 
To further investigate the difference 
in IL-17-induced gene expression, we 
generated a list of 72 inducers and ef-
fectors of the Th17 pathway and 157 
genes involved in Th17 differentiation 
based on previous Th17 transcriptome 
studies using human cells (53-56), to be 

checked against 12,893 gene list gener-
ated by the RNA-Seq. Looking at Th17 
inducers, there was no difference in IL-
1, 6, 8, 13, 17, 21, 22, 23, or 26, while 
IL-12B was expressed at lower levels 
in males (Table II; Fig. 2A). Interest-
ingly, receptors of IL-6, 12, 23, TGF-β 
and PGE2 were also down-regulated in 
males compared to females except for 
IL-17RC, which was upregulated (Ta-
ble II; Fig. 2B). 
It is important to note that in addition 
to Th17 cells, there are other IL-17-pro-
ducing cell types in response to IL-23 
(62), such as γδ T cells, natural killer 
(NK) cells, mast cells, neutrophils, and 
innate lymphoid cells, which amplify 
Th17 responses (23). While we do not 
know the exact constitution of IL-17 
producing cells within the PBMCs in-
cluded in the current study, it seems that 
molecules that are involved in the am-

plification of IL-17 responses, do not 
differ among male and female patients 
with AS. On the other hand, genes in-
volved in Th17 differentiation, such as 
BATF, SOCS1, NKD2, and ARID5A, 
were noticeably elevated in men with 
AS compared to females (Table III; 
Figure 2C) while FOXO1, which in-
hibits Th17 development by directly 
repressing RORC and IL-23R (66, 67), 
was decreased. Interestingly, genes in-
volved in the differentiation of type 1 
regulatory T cells (Tr1) such as AHR 
(68) and BLIMP1 (69) were also sig-
nificantly downregulated in men (Table 
III). Therefore, despite decreased in 
IL-23R expression, men with AS may 
have an increased propensity to gen-
erate Th17 cells with the same stimuli 
compared to women due to higher in-
duction of Th17-associated differentia-
tion genes. 

Table II. Cytokines and effector genes that were significantly changed with IL-17-express-
ing PBMCs of male patients with AS, using female AS patient values as baseline. 
Only genes with p-value <0.05 are shown in the table below.

Gene name Log FC Fold change p-value

IL6R -0.95 0.52 0.01
IL6ST -1.64 0.32 0.00
IL12B -1.80 0.29 0.04
IL12RB2 -1.61 0.33 0.00
IL23R -1.89 0.27 0.03
TGFBR1 -0.94 0.52 0.01
TGFBR2 -0.91 0.53 0.02
TGFBR3 -1.37 0.39 0.00
PTGER2 -0.76 0.59 0.04
CCR6 -1.10 0.47 0.03
CCL24 -1.43 0.37 0.04
TNFAIP6 -1.20 0.44 0.00
TNFRSF10B -0.92 0.53 0.02
TNFSF14 -1.05 0.48 0.03
TNFSF8 -1.33 0.40 0.03
TNFRSF9 -0.78 0.58 0.04
IL17RC 1.71 3.28 0.01
CLTA 0.94 1.92 0.01
TGFB1 1.16 2.24 0.04
S100A2 2.18 4.52 0.01
S100A4 1.58 3.00 0.04
S100A6 1.96 3.88 0.02
S100A8 1.21 2.31 0.03
S100A9 1.33 2.52 0.03
S100A10 1.08 2.12 0.03
S100P 3.12 8.66 0.00
PGE2 (PTGES2) 1.60 3.04 0.00
PTGES 3.76 13.53 0.00
CCL17 1.71 3.27 0.00
TNFRSF18 (AITR) 2.20 4.58 0.00
TNFAIP8L2 (TIPE2) 1.66 3.16 0.00
C1QTNF6 2.07 4.19 0.00
C1QTNF1 1.26 2.40 0.00
TNFRSF14 1.29 2.44 0.01
TNFRSF4 1.93 3.81 0.01
TNFRSF25 1.11 2.16 0.01
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Regarding effectors of IL-17-induced 
pathways, TGF-β, PGE2, and S100 
proteins including S100A2, 4, 6, 8, 9, 
10, and SP100P were highly upregu-
lated in males with AS compared with 
females (Table II; Fig. 2B). PGE2 is 
known to upregulate osteogenic bone 
morphogenetic protein 2 (BMP-2) (70) 

which induces osteoblast differentia-
tion from precursor cells and in vitro 
osteogenesis (71, 72). It is also down-
regulates Wnt/β-catenin inhibitors, 
including dickkopf-1 and sclerostin, 
which negatively regulate AS bone 
formation (73, 74). Additionally, EP4, 
which is one of the four PGE2 recep-

tors (EP1-4), has been found to be as-
sociated with AS (75) and it is unique-
ly upregulated in Th17 cells, where 
it drives Th17 cell development and 
further promotes EP4 expression in a 
positive feedback loop in AS (76). EP4 
expression levels have been shown to 
correlate with high AS disease activ-

Fig. 2. Heatmaps of genes in IL-17-expressing cells, comparing average values of healthy controls subdivided by gender (Ctrl_F = female healthy controls; 
Ctrl_M = male healthy controls) and patients with AS also separately analysed by gender (AS_F = female AS patients; AS_M = male AS patients), looking at 
various cytokines (A), IL-17 pathway inducers and effectors (B), and Th17-associated differentiation genes (C). The Heatmaps were generated with ClustVis 
publicly available from https://github.com/taunometsalu/ClustVis
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ity (76). Therefore, male patients with 
AS may have different mechanisms of 
AS pathogenesis and progression than 
females via upregulation of PGE2 and 
S100A genes. 

Discussion
It has already been known that men 
with AS, but not women, have more IL-
17-expressing cells and higher levels of 
IL-17A in peripheral blood than healthy 
controls (30, 31). Similarly, Gracey et 
al. data of whole blood RNA, male AS 
patients also showed alterations in gene 
expression compared with healthy con-
trols that were not observed in female 
AS patients. Such as up-regulation of 
immune sensors, autophagy-related 
genes, myeloid-associated genes, and 
certain proteases (ADAM8, CTSA, and 
CTSB), but downregulation of lympho-
cyte-regulating genes such as CD7, 
SKAP1, SLAMF6, and SH2D1A (30). 
In the present study, we specifically 
show that PBMCs from male and fe-
male AS patients stimulated with IL-17 
also show a differential gene expres-
sion pattern, which may offer insights 
into molecular mechanisms behind 
why AS presents differently by gen-
der. In-depth transcriptomic analysis of 
the IL-17 expressing PBMCs in males 
versus female AS patients revealed that 
males may have a higher propensity to 
produce Th17 cells by higher levels of 
transcription factors that are associated 
with Th17 differentiation, despite hav-
ing lower transcriptional levels of IL-
23R. Genome-wide association studies 
(GWAS) have shown that single nu-
cleotide polymorphism (SNPs) in the 
IL-23R are a susceptibility factor for 
ankylosing spondylitis (77). However, 
the associated relative risks are moder-
ate to low, and there is currently lack 
of functional evidence on how IL-23 
exactly contributes to the pathobiol-
ogy of AS (27). Cytokines with well-
understood mechanisms may in fact 
behave differently depending on the 
interacting cytokine networks or con-
tacts (78, 79). For example, δ1 popu-
lation of enthesis resident γδ T-cells 
lack IL-23R expression and thus only 
δ2 cells upregulate IL-17A in response 
to IL-23 (80). Therefore, spinal inflam-
mation in AS, especially in males, may 

not exclusively depend on IL-23. Ad-
ditionally, downregulation of receptors 
for IL23 and IL-6 in males in this study 
might be due to the lack of efficacy of 
IL-23 inhibitors and IL-6 in AS.
Additionally, while Th17 cells are the 
main cell type to produce IL-17 (23), it 
is important to note that there are other 
IL-17 producing cell types, includ-
ing CD+8 Tc17 cells, natural killer T 
cells, T Ψ/δ cells, group 3 innate lym-
phoid cells (ILC3) and natural Th17 
cells (81). Macrophages and microglia 
have also been shown to produce IL-17 
(82-84). For our RNA-seq analysis, we 
isolated PBMCs from whole blood of 
healthy controls and AS patients; how-
ever, we did not perform flow cytom-
etry to identify the exact constituents 
of the mononuclear cells. Similarly, 
while it is well recognised that male 
AS patients typically exhibit a higher 
prevalence of HLA-B27 positivity and 
uveitis compared to their female coun-
terparts, whether this disparity is linked 
to other gene expressions remains a 
topic that warrants independent inves-
tigation. It is important to note that our 
current pilot study did not account for 
these variations, which could be con-
sidered a limitation of our research. It 
is possible that Th17 cells were over-
represented in the male patients, given 
their pre-existing higher frequency 
at baseline. Also, the observation of 
decreased IL-23R expression in male 
patients is intriguing, considering that 
IL-23R polymorphisms have a strong 
association with AS and exert function-
al effects on T-cell immune response 
(63-65). Specifically, loss of func-
tion polymorphisms such as R381Q 
IL23R is associated with decreased 
IL-23-dependent IL-17 production and 
a lower percentage of circulating Th17 
and Tc17 cells (64). IL-17 inhibitors 
such as secukinumab and ixekizumab 
have been shown to significantly im-
prove patient’s Assessment in Spon-
dyloarthritis international Society 20 
(ASAS20) response (85). However, AS 
pathogenesis may also be mediated by 
other downstream pathways such as 
S100 proteins and prostaglandins than 
by commonly known cytokines such 
as IL-6, and IL-23. S100 proteins are 
part of one of the largest subgroups of 

the calcium-binding cytosolic protein 
family expressed in many tissues in hu-
mans. The S100 protein family consists 
of 25 known members (86, 87). They 
have a broad range of intracellular and 
extracellular functions encompassing 
the regulation of cell apoptosis, pro-
liferation, differentiation, migration, 
energy metabolism, calcium balance, 
protein phosphorylation, and inflam-
mation, where they trigger inflamma-
tory response through interacting with 
receptors RAGE and TLR4 (87). These 
findings may suggest new therapeutic 
target for AS and help us understand 
why targeting IL-6, IL-12, or IL-23 
alone has had limited clinical effica-
cy. In our study, for example, TGF-β, 
PGE2, and S100 proteins including 
S100A2, 4, 6, 8, 9, 10, and S100P were 
highly upregulated in men, which may 
offer insights into phenotypic differ-
ences between male and female pa-
tients with AS. 
Women with AS tend to have more 
prevalent or severe extra-articular 
presentations than men, including in-
flammatory bowel disease, psoriasis, 
enthesitis, and dactylitis (5, 29, 58). 
This may be related to imbalances of 
Th1/Th2 and Th17/Treg ratios that 
result from differing propensities to 
Th17 differentiation. Increase in Th1/
Th2 ratio and activity has been asso-
ciated with increased disease severity 
in AS (88, 89) while high Th1/Th17 
cell ratio has also been associated with 
more disease (90). Thus, the delay in 
diagnosis and progression of disease in 
women with AS may be partially attrib-
uted to this overall change the immune 
system composition compared to men. 
More studies focusing on the changes 
in these immune dynamics caused by 
increased IL-17 axis in male patients 
may be helpful to better understand 
the gender difference in clinical mani-
festation of AS. For example, Th17 
differentiation is intrinsically associ-
ated with iTreg cells given their shared 
TGFβ signalling, and Th17 differen-
tiation is also associated with Th22 
subsets given their shared IL-6 signal-
ling (91). Additionally, despite distinct 
proximal signalling events that induce 
Th17 differentiation, chronic stimula-
tion of Th17 cells via T-cell receptor 
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(TCR) or pro-inflammatory cytokines 
can convert mature Th17 cells to “Th1-
like” cells, as their late developmental 
axis of Th17 overlaps with Th1 cells 
(91). Studying the effect (or possibly 
the cause) of altered immune cell ratios 
may also include investigating roles of 
previously under-studied immune mol-
ecules and players in AS, such as S100 
proteins, which are starting to gain at-
tention (92). Additionally, in this study, 
the disease activity and severity as 
measured by validated questionnaires 
were comparable in both male and fe-
male cohorts. However, given the dif-
fering disease progression in the two 
genders, a widely applicable, objective 
staging system available for AS (93) 
may be useful to ensure comparisons 
at similar stages of disease between    
genders. 

Conclusions
Overall, in the present study we dem-
onstrate that male and female patients 
with AS show differential gene ex-
pression patterns in IL-17-expressing 
PBMCs. Genes involved in Th17 dif-
ferentiation, notably BATF, SOCS1, 
NKD2, and ARID5A were elevated 
in men compared to women, while 
cytokines and receptors which were 
known to amplify the IL-17 response 
were comparable. Moreover, there was 
no difference in IL-1, 6, 8, 13, 17, 21, 
22, 23, or 26, except lower levels of IL-
12B in males. Instead, TGF-β, PGE2, 
and S100 proteins including S100A2, 4, 
6, 8, 9, 10, and S100P were highly up-
regulated in men, but IL-23R and IL-
6R were downregulated. Future studies 
should focus on the effect of increased 
propensity to Th17 differentiation in 
men on the immune cell ratios and 
identification of disease stage system. 
Recognising differences in the im-
mune response between genders may 
be helpful in better understanding the 
molecular mechanism behind gender 
bias in the clinical manifestation of AS. 
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