A bidirectional Mendelian randomisation study of the association between rheumatoid arthritis and frailty

S. Li¹, Y. Shi¹, W. Fang², Y. Feng¹

¹Chengdu University of Traditional Chinese Medicine, Chengdu, China; ²Meishan Hospital of Traditional Chinese Medicine, Meishan, China.

Abstract

Objective

Observational studies have linked rheumatoid arthritis and frailty, but confounding factors and reverse causality make it unclear if there is a causal relationship. The current study used bidirectional two-sample Mendelian randomisation (MR) to assess the bidirectional causation between rheumatoid arthritis and frailty.

Methods

The primary analysis used the latest GWAS data for rheumatoid arthritis and frailty index in pure Europeans from large genome-wide association studies. Validation analysis was done to verify the accuracy of the results. The appropriate instrumental variables (IVs) were selected based on the three MR assumptions. The MR methods used were MR-Egger, weighted median (WM), and inverse variance weighted (IVW). The effects of horizontal pleiotropy were examined using the MR-Egger intercept and the MR-PRESSO method. To avoid single SNP bias, a leave-one-out analysis was performed.

Results

Genetic predictions suggested that there is a significant association between rheumatoid arthritis and the increased prevalence of frailty (IVW OR=1.01; 95% CI=[1.01–1.02], p=2.47 E-06). It has been verified in validation analysis that rheumatoid arthritis is also associated with frailty (IVW OR=1.03, 95% CI=[1.02-1.04], p=3.30E-17). Notably, genetic predictions suggested that frailty may be associated with the onset or development of rheumatoid arthritis (IVW β=1.25, SE=0.44, 95% CI=[0.39–2.12], p=4.58E-03).

Conclusion

The present study provides evidence supporting the fact that rheumatoid arthritis can increase the prevalence of frailty. Frailty may be a risk factor for rheumatoid arthritis, and whether frailty is involved in triggering the onset or progression of rheumatoid arthritis needs further study.

Key words

frailty, frailty index, Mendelian randomisation, rheumatoid arthritis
Introduction

Rheumatoid arthritis (RA) is a chronic disease characterised by inflammation, which causes joint inflammation (1). The condition can lead to fatigue, pain, and physical incapacity and is considered a serious illness (2). RA is known to increase the levels of C-reactive protein, interleukin-6, and tumour necrosis factor (3). It is the most common joint disease, affecting 1% of the world population, and it typically develops between the ages of 30 and 50 (4). However, 30% of cases occur in individuals over the age of 60. As life expectancy increases, it is likely that the number of older individuals with RA will also rise (5). The elderly RA population includes both geriatric-onset RA that appears after age 60 and individuals diagnosed with RA earlier in life who naturally become members of this group as they age (6). Elderly frailty is associated with increased health risks (7). The Fried criterion (8) and the frailty index (FI) (9) are commonly used to define frailty. In the Cardiovascular Health Study, Fried and his colleagues modified the phenotypic model to create three groups: frailty (three or more criteria), pre-frailty (one or two criteria), and no criteria (8). The frailty index is used to diagnose frailty in individuals aged 15–18 and ranges from 0 (no problems) to 1, with the boundaries of frailty being non-frail (0 to ≤0.12), mild (>0.12 to ≤0.24), moderate (>0.24 to ≤0.36), and severe (>0.36) (10). The frailty index is now considered to be the most useful vulnerability assessment methodology (11–14), with higher values of the index being associated with factors such as disability, mobility issues, chronic diseases, hospitalisation, and death (15–17). Frailty tends to increase with age, affecting 7% to 10% of individuals over 65 and 20% to 40% of those over 80 (8).

Frailty is characterised by weakness, fragility, slowness, and weight loss. Many of these symptoms are also present in people with RA (18–20). RA sufferers often experience muscle weakness, poor nutrition, and limited exercise, putting them at an increased risk for frailty (21–23). Cross-sectional research showed that 18.9% of Japanese RA patients were weak, while a systematic analysis found that 7.4% of older Japanese adults were frail (24, 25). As life expectancy increases and more people develop RA at an older age, there are more elderly RA patients. In Japan, it is expected that there will be 800,000 RA patients, with two-thirds of them being over 65 (26, 27). The mechanism between RA and frailty is not known, but factors such as pain, reduced physical activity, and inflammation may contribute (28–31). RA patients have greater circulating inflammatory markers than healthy individuals, which increases their risk of frailty (32, 33). However, despite evidence suggesting that RA patients are more likely to become frail (34), confounding factors and the possibility of reverse causation bias make the association between the two controversial.

Mendelian randomisation (MR) uses genetic variation as instrumental variables (IVs) to establish a strong causal inference between exposure and disease risk without involving potential confounders or reverse causality (35). To date, no MR analyses have investigated the possible causal relationship between RA and frailty. The research on the causal link between these two illnesses is significant because it will enhance our understanding of their causes and improve preventive and treatment strategies. In this study, a bidirectional MR analysis of RA and frailty was conducted to determine the bidirectional causal relationship between RA and frailty.

Materials and methods

Study design

The bidirectional MR study method was used to measure the causal effect in both directions. Based on the three assumptions of MR, eligible single-nucleotide polymorphisms (SNPs) were selected as IVs, the IVs must have a strong correlation with exposure. Secondly, the IVs should not be associated with confounders related to the exposure or the outcome, particularly the outcome. Lastly, IVs must exclusively affect outcomes through exposure. The causation and reverse causation between RA and frailty were observed by using IVs. In other words, the forward MR study analysed the effect of RA on the increased preva-
lence of frailty, and then the reverse MR study analysed the impact of frailty on the onset or development of RA. In order to ensure the accuracy of the analysis results, the primary analysis and validation analysis were carried out in both the forward MR study and the reverse MR study. Each predicted direction was validated through three crucial processes: the selection of the appropriate genetic IVs, the utilisation of multiple MR techniques, and the analysis of the results. Different sensitivity analyses were performed to determine the robustness of the results. Figure 1 presents the bidirectional Mendelian randomisation design.

Data source

One critical part of this MR analysis was choosing the suitable instrumental variables (IVs) from the genome-wide association study (GWAS) datasets that were available to the public. To prevent population stratification from having an impact, all SNPs and associated pooled data were obtained from European-ancestry groups. The primary analysis used the latest GWAS data for RA and frailty index in pure Europeans from large genome-wide association studies, including SNPs associated with RA from 97,173 people and SNPs associated with frailty index from 386,565 people. Meanwhile, an independent validation dataset was used for validation analysis. From IEU GWAS database (https://gwas.mrcieu.ac.uk/datasets/) to choose the appropriate SNPs, including RA from 58,284 European ancestry associated SNPs and frailty index from 175,226 European ancestry associated SNPs. The power calculation for this MR study was obtained via an online web tool (https://shiny.cnsgenomics.com/mRnd/). Table I provides information on the datasets used to assess the relationship between genetic polymorphisms, RA, and frailty, which were gathered from previously published studies. Previous studies of the statistics used have been ethically approved, and patient consent has been given; therefore, no additional ethical approval is required for this investigation.

Selection of instrumental variables

Genetic variation is used as instrumental variables (IVs) based on three assumptions of MR. To meet the first assumption, the entire genome was first scanned for single-nucleotide polymorphisms (SNPs) that were strongly correlated with exposure ($p<5E-8$). To exclude SNPs associated with a considerable linkage disequilibrium (LD), a clumping approach of $R^2 < 0.001$ with a window size of 10,000 kb was used. The results of horizontal pleiotropy were corrected using Mendelian Randomisation Pleiotropy Residual Sum and Outlier (MR-PRESSO) approach. To avoid weak instrumental bias, F-statistics and variance (R^2) were used to assess the strength of the screened SNPs. The most recent and precise formula $F = R^2(N-K-1)/(K(1-R^2))$ is used to determine the strength of the instrument (36). R^2 indicates the amount of exposure explained by each independent variable, and a device with an F value lower than 10 was considered weak when determining the strength of the instrument.

Statistical analysis

All statistical analyses were performed using R v. 4.2.1 (R Foundation for Statistical Computing, Vienna, Austria). MR analyses were performed using the ‘TwoSampleMR’ and ‘MRPRESSO’ packages. When all instrumental variables (IVs) were accurate, complementary MR methods like inverse variance weighted (IVW), weighted median (WM), and Mendelian randomisation-Egger (MR-Egger) were used to get the most accurate results (37).

The fixed-effect or random-effect IVW approach was used as the primary analysis for causal estimates. In the MR-Egger regression model, an intercept denoting the mean multiplicity bias was involved (38). The WM approach utilised the median MR estimate as the causal estimate (39), and the odds ratio (OR) and 95% confidence interval (CI) were employed to evaluate the relative risk associated with the target illness. The MR-PRESSO technique was used to identify and eliminate outliers while testing for possible horizontal pleiotropy. The IVW method and Egger regression were used to assess heterogeneity, and Cochran’s Q statistic was used to quantify it. If heterogeneity ($p<0.05$) was observed, a random-effect IVW test was performed for a more cautious yet reliable estimate. Finally, a leave-one-out analysis was conducted to ensure consistency in the relationship between SNPs and exposure and to identify any significant impact of the SNPs.

Results

Effects of RA on frailty

Based on strict exclusion criteria, 61 SNPs associated with RA were included. The F-value for instrumental variables was greater than 10, indicating there was no bias of weak instrumental variables. The IVW method was used in the random-effect model, because the Cochran Q test showed heterogeneity ($p<0.05$). Using the IVW method, genetic predictions suggested that RA was associated with the increased prevalence of frailty in the primary analysis.
Table I. Characteristics of data sources used in the Mendelian randomisation study.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Sample size</th>
<th>Year</th>
<th>PMID</th>
<th>population</th>
<th>GWAS ID</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>97.173</td>
<td>2022</td>
<td>36333501</td>
<td>Europe</td>
<td>NA</td>
<td>36333501</td>
</tr>
<tr>
<td>Frailty</td>
<td>386.565</td>
<td>2023</td>
<td>36938559</td>
<td>Europe</td>
<td>NA</td>
<td>36938559</td>
</tr>
<tr>
<td>RA</td>
<td>58.284</td>
<td>2014</td>
<td>24390342</td>
<td>Europe</td>
<td>ieu-a-832</td>
<td>MRC-IEU</td>
</tr>
<tr>
<td>Frailty</td>
<td>175.226</td>
<td>2021</td>
<td>34431594</td>
<td>Europe</td>
<td>ebi-a-GCST90020053</td>
<td>MRC-IEU</td>
</tr>
</tbody>
</table>

Table II. MR assessments of the causality of RA on frailty.

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Outcomes</th>
<th>nSNPs</th>
<th>Method</th>
<th>OR (95%CI)</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>Frailty*</td>
<td>61</td>
<td>IVW</td>
<td>1.01 (1.01-1.02)</td>
<td>2.47E-06</td>
<td>35.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61</td>
<td>MR-Egger</td>
<td>1.01 (1.00-1.02)</td>
<td>3.17E-03</td>
<td>3.17E-03</td>
</tr>
<tr>
<td>RA</td>
<td>Frailty*</td>
<td>34</td>
<td>IVW</td>
<td>1.03 (1.02-1.04)</td>
<td>3.30E-17</td>
<td>34.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>MR-Egger</td>
<td>1.03 (1.02-1.04)</td>
<td>4.32E-06</td>
<td>4.32E-06</td>
</tr>
</tbody>
</table>

Table III. MR assessments of the causality of RA on frailty.

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Outcomes</th>
<th>nSNPs</th>
<th>Method</th>
<th>β</th>
<th>SE(95%CI)</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>Frailty*</td>
<td>28</td>
<td>IVW</td>
<td>0.49</td>
<td>0.28 (-0.06-1.04)</td>
<td>8.21E-02</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>MR-Egger</td>
<td>-1.02</td>
<td>1.09 (-3.15-11.11)</td>
<td>3.57E-01</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>Frailty*</td>
<td>6</td>
<td>IVW</td>
<td>1.25</td>
<td>0.44 (0.39-2.12)</td>
<td>4.58E-03</td>
<td>13.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>MR-Egger</td>
<td>1.87</td>
<td>4.76 (-7.45-11.19)</td>
<td>7.14E-01</td>
<td></td>
</tr>
</tbody>
</table>

Table IV. Sensitivity analyses of MR.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Heterogeneity test</th>
<th>Pleiotropy test</th>
<th>MR-Egger intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q</td>
<td>Q_df</td>
<td>Q_pval</td>
</tr>
<tr>
<td>RA</td>
<td>35.76</td>
<td>27</td>
<td>0.12</td>
</tr>
<tr>
<td>Frailty</td>
<td>109.57</td>
<td>60</td>
<td>9.82E-05</td>
</tr>
<tr>
<td>RA</td>
<td>1.07</td>
<td>5</td>
<td>0.96</td>
</tr>
<tr>
<td>Frailty</td>
<td>27.58</td>
<td>33</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Effect of frailty on RA

The reverse MR study was used to investigate the causal relationship between frailty as an exposure factor and RA. 28 SNPs associated with the frailty index were included according to stringent exclusion criteria. The F-value for instrumental variables was greater than 10, indicating there was no bias of weak instrumental variables. The IVW method was used in fixed-effect model, because the Cochran Q test showed no heterogeneity (p>0.05). Using the IVW method, genetic predictions suggested that frailty was not associated with RA in the primary analysis (IVW β=0.49, SE=0.28, 95% CI=[0.06–1.04], p=0.082). The analysis results of the WM and MR-Egger methods are consistent with the findings of IVW (WM β=0.33, SE=0.36, 95% CI=[0.39–1.04], p=0.368; MR-Egger β=-1.02, SE=1.09, 95% CI=[-3.15–1.11], p=0.357). However, genetic predictions suggested that frailty may be associated with the onset or development of RA in the validation analysis (IVW β=1.25, SE=0.44, 95% CI=[0.39–2.12], p=4.58E-03). Table III summarises the results of MR Analyses of the effects of RA on frailty.

Discussion

The present MR study assessed the bidirectional causal link between RA and...
frailty by analysing pooled GWAS data. The findings suggest a significant association between RA and the increased prevalence of frailty. Notably, genetic predictions suggest a possible association between frailty and the onset or development of RA.

The present forward MR study has analysed the causal relationship between RA and the increased prevalence of frailty. Previous research has indicated that frailty or pre-frailty is common in patients with RA. First, a logistic regression analysis assessed the effect of RA on frailty. The results showed that the degree of frailty in RA patients was linked to age (OR [95% CI]=1.12 [1.07–1.17]), comorbidities (OR [95% CI]=1.51 [1.01–2.27]), and high disease activity (OR [95% CI]=1.10 [1.04–1.16]) (40). Meanwhile, in a recent meta-analysis of frailty and pre-frailty in patients with RA, the results showed a pooled prevalence of 52.8% (95% CI= 42.7–62.8; I²=99%) for pre-frailty and 24.0% (95% CI=19.4–28.6; I²=96%) for frailty (41). The results of the present MR study confirmed the findings of these earlier observational studies. The results of both the primary analysis and the validation analysis suggest that RA is associated with an increased prevalence of frailty; this is consistent with the results of observational studies, and the present study validated the observational findings using the GWAS data of RA and the frailty index, which enhances the robustness of causality. The underlying mechanism of the association between RA and frailty is still under investigation. Previous studies have suggested that systemic inflammation is linked to frailty (42), with elevated levels of pro-inflammatory cytokines associated with fatigue, reduced functional capacity, and decreased activity (43). Experimental evidence also supports a direct influence of cytokines on the central nervous system, which could contribute to exhaustion (44). Notably, IL-6, a pro-inflammatory cytokine, has been shown to cross the blood-brain barrier and affect neurons, while high levels of IL-6 and TNF have been linked to decreased muscle mass and strength (45, 46). Pain is another symptom that may indicate frailty, highlighting the importance of pain management to prevent vulnerability and mortality (47). Depression is a particularly prevalent comorbidity in RA patients, with up to 16.7% fulfilling diagnostic criteria for severe depression (48). Co-morbid depression can have a significant negative impact on patients’ health-related quality of life, physical function, mental function, mortality, pain experience, and symptom severity (49). Depressive symptoms may also be a risk factor for frailty, as they could be associated with changes in behaviours and activities that lead to greater impairment and frailty (50). A long-term connection between pain and depressive symptoms suggests, on the other hand, that depressive symptoms might be early indicators of frailty (51). This connection is unaffected by visit duration, age, or disabling disease and has been referred to as the depression-pain binary model (52). More older people are developing RA, and the death rate has increased. The management of older RA patients is more challenging because a robust therapeutic targeting approach must be balanced against adverse events caused by increased comorbidities in older age (6). Frailty is becoming increasingly recognised as a sign of aging and is linked to an increased risk of falls, injuries, and mortality. There is a growing need to recognise frailty as a significant issue in the management of RA. A greater understanding of the link between RA and frailty is needed to develop targeted preventive measures.

The present reverse MR study was conducted to analyse the causal effect of frailty on RA and also to explore potential risk factors for RA. The aetiology of RA remains unclear, but great progress has been made in identifying risk factors for RA in recent years. Genetic susceptibility factors for RA have been known for many years; the most prevalent and strongly associated region remains the HLA-DRB1 region, with a 3-fold increased risk of RA (53). The best-defined environmental and behavioral risk factor for seropositive RA is smoking (54). Other factors such as obesity, hormonal factors, drug use, alcohol consumption, an unhealthy diet, periodontitis, and low socioeconomic status may also affect susceptibility to RA (55). Notably, the interaction of genetic, environmental, and behavioural risk factors leads to a breakdown of immune tolerance and an autoimmune process that begins with the first symptoms of non-clinical arthritis and ends with arthritis. Frailty is a poor clinical condition that can lead to many adverse outcomes, such as the development of new diseases or the hindering of recovery from existing diseases. Musculoskeletal function is a key component in quantifying frailty, and in patients with frailty, sarcopenia is often observed, which can lead to joint instability and increase the likelihood of biomechanical damage (56). In addition, higher levels of pro-inflammatory cytokines, such as IL-116, CRP, and TNF, are present in frail subjects. These mediators may accumulate in the joints, induce local low-grade inflammation and cartilage destruction, and lead to catabolic changes in joint structure. The proinflammatory state may impair the ability of joints to repair themselves (57). It can be seen that frailty is closely related to musculoskeletal health. Osteoarthritis and RA are both musculoskeletal disorders. Studies have shown that frailty and osteoarthritis disease interact, and frailty is one of the risk factors for osteoarthritis. Musculoskeletal pain, swelling, and stiffness are common symptoms of RA, and RA patients are at high risk of sarcopenia (greater than 25% prevalence), with varying degrees of loss of skeletal muscle strength and mass (58). The results of the reverse MR study suggest that frailty may be related to the occurrence or development of RA. Such results have suggestive clinical significance because there are no observational studies on the effect of frailty on RA, and such results are also worth exploring. There are several possible reasons for such results. First, frailty is a poor clinical health condition, and frailty is closely related to musculoskeletal health. Patients with frailty may be prone to some musculoskeletal problems. When recognised risk factors for RA such as autoimmune disease, genetics, infection, or smoking are present, patients with frailty are more likely to develop RA relative to non-frailty patients. Second, as with many autoimmune diseases, the
cause of RA is multifactorial, and in the exploratory stage, frailty may be a risk factor for RA. Finally, if frailty interacts with RA, frailty may promote the onset or progression of RA, and when frailty is already present in patients with RA, frailty may be associated with an accelerated progression of RA.

The study offers several significant benefits. First, this is an analysis of bidirectional causal relationships between RA and frailty using pooled GWAS data. Some previous cross-sectional studies have controlled for confounding factors, but there may still be bias that hasn’t been found. Reverse causality has no impact on the association between genotype and disease for the genes used as IVs in the MR Study, and there is very little chance that these genes are associated with environmental confounders. Second, the MR analysis method is accurate enough, especially the IVW method, to detect causal effects when all IVs are valid and to produce consistent estimates using different MR techniques. At the same time, sensitivity analysis is performed in this study to check the robustness of the analysis results. Finally, the bidirectional analysis ensured causal inferences about RA and frailty in both directions. The present study provided strong evidence to support a causal relationship between RA and frailty from a genetic perspective. Notably, the results suggest that frailty may be associated with the onset or development of RA, and that if RA and frailty interact, their severity may change over time. It is recommended that disease activity in RA be regularly evaluated and treatment adjusted accordingly, and frailty should also be regularly evaluated. Because there is now no clear evidence that frailty has an effect on RA, further research is needed in the future to determine whether frailty is involved in triggering the onset or progression of RA.

Acknowledgment

The authors appreciate the public data sets provided by the research or consortium cited and included in this study.

References

20. OVERMAN CL, KOLI MB, DA SILVA JA,