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ABSTRACT
Primary Sjögren’s syndrome (pSS) is an 
autoimmune disorder characterised by 
immune-driven damage to the exocrine 
glands, leading to diminished salivary 
and tear production. While the patho-
genesis of pSS remains incompletely 
understood, its clinical presentations 
vary widely, and no specific treatments 
are currently available. Toll-like recep-
tor 7 (TLR7) belongs to the Toll-like re-
ceptor family and is crucial for the in-
nate immune response, notably in rec-
ognising pathogenic patterns. TLR7 is 
predominantly found in the endoplas-
mic reticulum (ER) and endosomes, 
where it identifies single-stranded RNA 
(ssRNA). Upon ligand binding, TLR7 
activates the Myd88-dependent signal-
ling cascade, eliciting an immune re-
sponse. Dysregulation and variations 
in TLR7 expression are implicated 
in several autoimmune disorders. In 
genetically predisposed individuals, 
factors such as infections, endocrino-
logical abnormality and metabolic ab-
normalities can cause TLR7 dysregula-
tion, aggravating pSS symptoms and 
progression. While studies on TLR7 
in pSS are limited, they offer insights 
into the disease’s pathophysiological 
processes, vital for the treatment and 
prognosis. This article explores the 
mechanisms of TLR7 dysregulation, its 
involvement in pSS pathogenesis, and 
prospective therapeutic significance.

Introduction
Primary Sjögren’s syndrome (pSS) is a 
chronic autoimmune disorder charac-
terised by mononuclear cell infiltration 
of exocrine glands, mainly the salivary 
and lacrimal glands, leading to de-
creased salivary and tear production (1). 
Clinically, pSS presents with consider-
able heterogeneity. While dry eyes and 
mouth are common symptoms, nearly 

all organs can be affected. Roughly one-
third of patients manifest extraglandular 
symptoms, including severe fatigue, 
musculoskeletal pain, polyarthritis, my-
algia, vasculitis, interstitial nephritis, 
and pulmonary complications (2). In 
China, the disease’s estimated preva-
lence ranges from 0.1% to 0.77%, wit-
nessing an upward trend recently. As per 
the American College of Rheumatology 
(ACR) data, females represent approxi-
mately 90% of pSS cases, with males 
constituting a mere 10% (3), this gen-
der distribution is similar in China (4). 
At present, no specific treatments exist; 
clinical approaches focus on local and 
systemic therapies to mitigate symptoms 
and enhance patient comfort.
The exact pathogenesis of pSS remains 
elusive. While genetic predispositions 
contribute to its onset (5, 6), in geneti-
cally predisposed individuals, factors 
such as infections, endocrinological ab-
normality and metabolic abnormalities 
can induce aberrant immune responses. 
This encompasses the atypical activa-
tion of T lymphocytes, notably Th1 (7), 
and upregulated expression of Th17 in 
affected salivary glands (8). B lympho-
cyte activation, followed by dendritic 
cell (DC) activation, culminates in 
anomalous B lymphocyte activity (9). 
This process, coupled with the release 
of I-IFN, establishes a self-reinforcing 
feedback loop. Various viruses, includ-
ing Epstein-Barr virus (EBV) (10), 
coxsackie virus (11), hepatitis C virus 
(12), cytomegalovirus (CMV) (13), and 
retrovirus (14) are proposed as poten-
tial disease triggers. TLR7, found in 
plasmacytoid dendritic cells (pDCs) 
and other immune cells, is an immune 
receptor that detects viral nucleic acids 
(15), playing a pivotal role in the initia-
tion and progression of pSS.
The dysregulation of Toll-like recep-
tors (TLRs) has been implicated in 
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various autoimmune diseases, includ-
ing pSS. The TLR family is pivotal in 
recognising pathogens and initiating 
innate immunity. Highly conserved 
from drosophila to humans, TLRs share 
structural and functional similarities. 
With 11 members in humans, they rec-
ognise pathogen-associated molecular 
patterns (PAMPs) on infectious agents, 
triggering cytokine production for ef-
fective immunity. TLRs exhibit distinct 
expression patterns for recognising 
structural components in microorgan-
isms; for instance, TLR-3 and -8 are 
crucial for single-stranded RNA virus 
recognition. This variation highlights 
their specialised roles in host defence. 
In humans, the TLR family comprises 
10 functional members (TLR1-10) 
and one non-functional pseudogene 
(TLR11) (Fig. 1). Among them, TLR7, 
primarily expressed in immune cells, 
belongs to the Toll-like receptor fam-
ily. It detects viral structures and cellu-
lar nucleic acids, initiating an immune 
response by binding to single-stranded 
RNA (ssRNA) molecules and activat-
ing immune cells (15). TLR7’s role is 
pivotal in the immune system, particu-
larly regarding viral infections, autoim-
mune disorders, tumours, and immune 
regulation. Recent studies link the onset 
of pSS to TLR7 overactivation, result-
ing in atypical immune reactions. This 
article offers a concise review of the 
research exploring the association be-
tween TLR7 and pSS pathogenesis.

Toll-like receptor 7 (TLR7)
TLR7, a member of the Toll-like recep-
tor family, is situated within the intra-
cellular ER and is classified as a type I 
transmembrane glycoprotein receptor. 
Its structure comprises a signal peptide 
sequence, extracellular, transmembrane, 
and intracellular regions. The signal 
peptide sequence directs the translated 
protein to the membrane surface (16). 
The extracellular region harbours mul-
tiple leucine-rich repeat sequences 
(LRRs) for pathogen recognition and 
binding. Within this structure, the Z-
loop, positioned between LRR14 and 
LRR15, is integral to the TLR7 ligand 
recognition mechanism (17). Research 
by Zhang et al. (18) identified two bind-
ing sites within this region. The first per-

tains to small or chemical ligands, in-
ducing TLR7 conformational shifts and 
activation. The latter associates with 
ssRNA, bolstering TLR7 aggregation 
and activity. The transmembrane sec-
tion has a singular α-helix that anchors 
TLR7 to the cellular membrane. The in-
tracellular section houses the Toll/IL-1 
receptor (TIR) domain, responsible for 
signal relay and downstream immune 
activation (19). Within this domain, 
TRAM, a crucial protein, amplifies the 
TLR7 signalling pathway’s transmis-
sion (20). MyD88, a component of the 
TRAM proteins, dictates the bifurca-
tion of the TLR signalling pathway 
into MyD88-dependent and independ-
ent routes. Notably, TLR7 employs the 
MyD88-dependent path (21). TLR7 is 
found in an array of immune cells such 
as monocytes, macrophages, pDCs, B 
cells, microglia, and dendritic cells (22, 
23), with a notably high expression in 
human pDCs. Its expression is also pro-
fuse in the heart, spleen, bone marrow, 
and lymph nodes (24).
TLR7 primarily recognises ssRNA rich 
in guanosine and uridine, encompass-
ing a range of viral and bacterial RNAs 
(25, 26). Certain chemically synthe-
sised small molecules, like imiquimod 
and R848, can emulate the structure of 
natural RNA, consequently activating 

the TLR7 pathway (24). Known inhibi-
tors of TLR7 encompass hydroxychlo-
roquine (27), small molecules AT791 
and E6446 (28), and Toll-like receptor 
dual agonists (29).
TLR7 activates the immune system 
through the MyD88-dependent path-
way. Upon ligand binding, TLR7 forms 
a MyD88-associated complex (Myddo-
some) involving IRAK-4, IRAK-1, and 
TRAF6, initiating downstream events 
(31). TRAF6 engages with TAK1, 
TAB1, TAB2, and TAB3, forming a 
complex with UBC13 and UEV1A. 
TAK1, a MAPK kinase, modulates 
various pathways, including NF-κB. 
TAB1 orchestrates protein kinase ac-
tivation, and TAB2 activates NF-κB 
and JNK effectors via multi-ubiquitin 
chains (32, 33). UBC13, a ubiquitin-
conjugating enzyme, and UEV1A, an 
E2 variant, trigger TAK1 activation, 
phosphorylating the IKK complex and 
MAP kinase. The IKK complex (IKKα, 
IKKβ, NEMO/IKKγ) then initiates 
NF-κB translation, and phosphorylated 
MAP kinase promotes AP-1 transcrip-
tion factor translation (34-40). These 
pathways culminate in cytokine synthe-
sis (I-IFN, IL-12, TNF-α), contributing 
to pSS pathogenesis (Fig. 2).
Punnanitinont et al. (41) employed 
the NOD.B10Sn-H2b mouse model 

Fig. 1. The classification 
of all the family of TLRs.
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to determine the effects of the TLR7 
agonist, Imiquimod. They discovered it 
promotes T-bet+ B cells’ proliferation, 
subsequently hastening the progression 
of both local and systemic autoimmune 
reaction in pSS. Another investigation 
(42) utilising TLR8-deficient (TLR8ko) 
mice upon stimulation with TLR7 ago-
nists unveiled symptoms of pSS, such 
as lymphocytic inflammation in exo-
crine glands, production of anti-SSA 
and anti-SSB autoantibodies, abnormal 
level of multiple cytokines, immune 
complex deposition, and frequent lung 
inflammation. Additionally, in TLR8ko 
mice, the exocrine glands displayed ec-
topic lymphoid structures characterised 
by B/T cell clustering regions. How-
ever, such manifestations were absent 
in the double TLR7/8 deficient mice, 
underscoring TLR7’s significant influ-
ence on pSS development. In another 
study, Savarese et al. (43) observed that 
introducing a small nucleolar ribonu-
cleic acid, U1snRNA, and oligonucleo-
tides from U1snRNA to pDCs directly 
induces TLR7-mediated I-IFN release 
in specific C57BL/6 mouse models. 
These animal models collectively high-
light the pivotal role TLR7 plays in the 
initiation and advancement of pSS. Re-
search comparing TLR7 deficient and 
wild-type mice underscored TLR7’s 
significance in autoimmune disease 
evolution, revealing that its absence 
slows autoimmune disease progres-
sion in mice. Notably, TLR7 exhibits 
high expression in the lacrimal gland of 
wild-type mice (20).

TLR7 and pSS pathogenesis
The impact of TLR7 gene 
polymorphisms on pSS susceptibility
Gene polymorphism denotes the pres-
ence of multiple variants of a single gene 
among diverse individuals, potentially 
influencing the onset and progression 
of specific diseases. In the context of 
autoimmune diseases like pSS, research 
has highlighted a strong association 
between splicing variations and single 
nucleotide polymorphisms (SNPs) of 
the TLR7 gene and the disease’s onset 
and progression. Additionally, polymor-
phisms within certain human leukocyte 
antigen (HLA) genes have been linked 
to the emergence of pSS. Such genetic 

variations can impact the immune sys-
tem’s capacity for antigen recognition 
and processing, thereby elevating the 
risk of pSS development.
It is noted that TLR7 is implicated in 
the CMV immune response (44). In a 
study conducted by Arav-Boger et al. 
(5), during CMV infection, of the four 
TLR7 SNPs, those homozygous for the 
minor allele displayed an elevated anti-
body response compared to either hete-
rozygotes or homozygotes carrying the 
common allele. Notably, rs179008 and 
rs179009 in TLR7 were significantly 
correlated with this antibody response, 
along with the association of CMV in-
fection and the onset of pSS (5) suggest-
ing that TLR7 gene polymorphism may 
influence disease development during 
viral infections. 

Researchers from various countries con-
ducted gene sequencing and comparative 
analyses on patients with systemic lupus 
erythematosus (SLE) versus the healthy 
controls of Egypt (45), Denmark (46), 
East Asia (Korea, China, Japan) (47).
Their findings consistently indicated 
that, relative to the general population, 
the CG genotype of TLR7- rs3853839 
and the G-allele of TLR7- rs3853839 
are more prevalent among SLE pa-
tients, they are also associated with an 
increased risk of SLE in African Ameri-
cans, Native Americans, and European 
Americans/Hispanic Americans (48). 
This mutation induces an overactive 
TLR7 signalling pathway, prompting the 
immune system to target its own tissues. 
Furthermore, in Japanese women, the 
TLR7 SNPs rs179019 and rs179010 are 

Fig. 2. Intracellular TLR7 trafficking and signalling.
Upon TLR7 activation, the cytoplasmic adapter protein MyD88 forms a complex (Myddosome) with 
IRAK-4, IRAK-1, and TRAF6. Downstream signalling involves TRAF6 interacting with TAK1, 
TAB1, TAB2, and TAB3, along with UBC13 and UEV1A. TAK1, a MAPK kinase, modulates path-
ways including NF-κB activation, while TAB1 and TAB2 contribute to protein kinase activation and 
NF-κB/JNK effector activation through multi-ubiquitin chains, respectively. UBC13 and UEV1A play 
roles in non-canonical ubiquitination and multi-ubiquitin chain synthesis. The assembled complex ac-
tivates TAK1, leading to the phosphorylation of the IKK complex and MAP kinase. This results in the 
translation of NF-κB and AP-1 transcription factors, culminating in the synthesis of cytokines (I-IFN, 
IL-12, and TNF-α) implicated in pSS pathogenesis.
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linked to the onset of SLE and remain 
unaffected by TLR7- rs3853839 (49). 
These studies offer potential insights 
into the effects of TLR7 gene polymor-
phism on pSS vulnerability.
The multichannel transmembrane pro-
tein, UNC93B1, resident in the ER, 
plays a pivotal role in determining 
the localisation and functional activ-
ity of TLR7. UNC93B1 facilitates the 
transit of TLR7 from the ER to the en-
dosomes, where TLR7 exerts its role 
(74). Concurrently, the C-terminal tail 
of UNC93B1 interacts with syntenin-1, 
forming a complex (Fig. 1). This com-
plex aids the translocation of activated 
TLR7 into intraluminal vesicles for sub-
sequent degradation or sequestration 
(45), a mechanism that curtails TLR7 
signal transduction and thwarts auto-
immune reactions (46). Additionally, 
UNC93B1 modulates and dampens the 
overactivation of TLR7 via TLR9 (52). 
Research by Majer et al. (51) identified 
multiple mutations in UNC93B1 that 
can amplify TLR7 signalling in mac-
rophages, such as PRQ(524-526)/AAA, 
PKP(530-532)/AAA, DNS(545-547)/
AAA, and DES(548-550)/AAA.

Impact of abnormal TLR7 
expression on the pathogenesis of pSS
In the progression of pSS, there is a 
prominent involvement of the overpro-
duction of Type I interferon (IFN-I). 
The Type I IFN signature, comprising a 
set of Type I interferon-inducible genes 
(IFIGs), encapsulates the overarching 
effects of IFN, allowing for the assess-
ment of its impact on various immune 
cells and responses (53). A significant 
proportion, over half of pSS patients, 
exhibit elevated expression levels of 
this signature, correlating with intensi-
fied disease activity and increased au-
toantibody concentrations (54). 
Research by Maria et al. (55) demon-
strated that TLR7 is markedly upregu-
lated in IFIGs-positive pSS patients, 
along with the RNA sensors RIG-I and 
MDA5, a finding echoed by Zheng et 
al. (56). Additionally, in the salivary 
glands of pSS patients, TLR7-positive 
cells are found in not only ductal epi-
thelial cells but also epithelial islands 
and lymphocytes, which is different 
from the control group where they are 

confined to the ductal epithelial cells 
(56). Beyond mRNA analysis, Karlsen 
et al. (57) identified enhanced TLR7 
expression in pSS patients’ periph-
eral blood mononuclear cells through 
Western blotting. Japanese research 
pinpointed the predominant expression 
in pSS patients’ lip glands to be TLR-
7, which concurrently expresses with 
MyD88, TRAF6, and Interferon regula-
tor factor 7 (IRF7) (58). Cumulatively, 
these investigations suggest that aber-
rant TLR7 expression potentially insti-
gates irregular immune system activa-
tion, intensifying the manifestation and 
progression of pSS.

Impact of abnormal TLR7 activation 
on the pathogenesis of pSS
The distinction pDCs draw between 
viral and self-cellular nucleic acids is 
mediated through the intracellular lo-
calisation of TLR7 and other associated 
TLRs. Unlike viral nucleic acids, those 
released by self-cells degrade rapidly 
in the extracellular environment and 
usually cannot penetrate pDCs under 
typical conditions (59). In the context 
of autoimmune diseases, nucleic acids 
released from self-cells, when internal-
ised by pDCs, can activate these cells 
through TLR7. Specifically, when self-
RNA complexes with the endogenous 
antimicrobial peptide LL37, it gains 
access to the pDC’s ER, subsequently 
triggering TLR7 (60). A study by Salvi 
et al. (61) revealed that exosomes de-
rived from the serum of SLE patients 
can activate pDCs ex vivo, culminating 
in I-IFN secretion. This stimulatory ef-
fect can also be achieved using micro-
RNA extracted from exosomes, indicat-
ing that microRNA might serve as an 
intrinsic ligand for TLR7 activation in 
autoimmune scenarios (43).

Factors influencing TLR7 
expression and function
Several factors, including genetics, sex 
hormones, infections, and endogenous 
elements, influence TLR7 expression 
and function. Collectively, these ele-
ments elevate TLR7 expression, con-
tributing to the emergence of pSS. 
Notably, the prevalence of pSS is sig-
nificantly higher in women than in 
men, with a ratio of approximately 9:1 

(3). Recent research has shed light on 
the potential roles of oestrogen and X 
chromosome dosage in the occurrence 
of pSS. 
Interferon-α (IFN-α), mediated by 
TLR7, activates both IRF7 and IRF5/
NF-κB pathways, which in turn stimu-
late the synthesis of pro-inflammatory 
cytokines. This establishes the significant 
immunoregulatory function of TLR7-
mediated IFN-α within pDCs (62). In 
mouse models, Panchanathan et al. (63, 
64) observed that oestrogen signalling el-
evates the expression levels of the TLR7 
transmembrane protein Unc93b1 and the 
IRF5 gene in immune cells. Compara-
tive studies indicate a diminished TLR7-
mediated immune response in postmeno-
pausal women’s pDCs, relative to their 
premenopausal counterparts (65). This 
intimates a potential analogous function 
of oestrogen in human immune cells, 
warranting further investigation.
Laffont et al. (65) utilised quantitative 
PCR flow cytometry to determine that 
oestradiol activates the oestrogen recep-
tor α (ERα) in mouse pDCs, augment-
ing their capability to produce IFN-α 
and pro-inflammatory cytokines upon 
TLR7 and TLR9-mediated stimulation. 
Moreover, the team investigated the ER 
gene’s expression in human pDCs to 
discern potential gender-related dispar-
ities. Notably, while ERα expression 
in female pDCs marginally exceeded 
that in males, the variance was not sta-
tistically significant. Hence, alternate 
mechanisms might mediate the influ-
ence of oestrogen receptor signalling on 
TLR7 expression and IFN-α synthesis.
X-chromosome inactivation (XCI) in 
female mammals is a process by which 
one X chromosome is randomly inacti-
vated to maintain gene dosage equilibri-
um (59). In human cells, however, XCI 
is incomplete. Using single-cell tran-
scriptomics and genomic sequencing, 
Tukiainen et al. (66) determined that 
nearly one-third of the X-chromosome 
genes in female cells exhibit biallelic 
expression. This variable expression 
across individuals is known as escape 
from XCI. Notably, the TLR7 gene, 
situated on the X chromosome’s short 
arm, belongs to a non-homologous seg-
ment (67) and may display this escape 
phenomenon. Through single-cell RNA 
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sequencing, Souyris et al. (68) found 
that TLR7 in female immune cells 
evades XCI, resulting in expression 
levels double that of males. Similarly, 
TLR7 in Klinefelter patients (46, XXY) 
also shows biallelic expression, twice 
the rate seen in typical males. Interest-
ingly, Scofield et al. (69) recorded an 
uptick in autoimmune diseases among 
the Klinefelter population. The gene 
Chromosome X open reading frame 21 
(CXorf21), encoded on the X chromo-
some, sees enhanced expression when 
TLR7 binds to its ligand. Disrupting 
CXorf21 hampers the TLR7-mediated 
production of IFN-α (70). Recent find-
ings indicate that females express CX-
orf21 at higher levels in single nucleated 
cells and B cells than males, suggesting 
a possible escape from XCI (71). Col-
lectively, the data insinuate that varia-
tions in X chromosome dosage and the 
phenomenon of gene escape from XCI 
might influence the prevalence of pSS.
The Y-linked autoimmune accelerator 
(Yaa) locus is a potent allele associated 
with autoimmunity, causing aberrations 
in TLR7-mediated innate immune re-
actions (72). Through transcriptomic 
analysis, Subramania et al. (73) studied 
the expression patterns of the X chro-
mosome gene cluster in B cells from 
male mice harbouring the Yaa. They 
found that the translocation of the TLR7 
gene to the Yaa chromosome resulted 
in its twofold overexpression, which is 
sufficient to perturb the innate immune 
response mediated by TLR7.
The transportation mechanism of TLR7 
can influence its expression and func-
tionality within the ER. Petes et al. (74) 
suggest that agents such as chloroquine 
or hydroxychloroquine can potentially 
modify the folding and transportation 
of TLR7 within the ER, leading to di-
minished expression levels. Addition-
ally, stress within the ER may prompt 
TLR7 aggregation and subsequent deg-
radation.
Furthermore, TLR7 sensitivity contrib-
utes to the development of pSS. Research 
by Bekeredjian-Ding et al. (75) indicates 
that pDCs and I-IFN secretion modulate 
the responsiveness of juvenile B cells to 
TLR7 ligands. These factors notably am-
plify the TLR7 sensitivity in both juve-
nile B cells and memory B cells.

TLR7 and pSS treatment
Recent research indicates that TLR7 
plays a role in the pathogenesis of pSS 
by facilitating the production of autoan-
tibodies and instigating inflammatory 
responses. Such insights could be piv-
otal for advancing pSS treatment.
Recent studies offer promising direc-
tions for the development of innovative 
therapeutic approaches. 
Modulating the upstream signals of 
TLR7 can alter the TLR7 signalling 
pathway, potentially offering a thera-
peutic avenue for disease treatment. 
Bekeredjian-Ding et al. (75) empha-
sised the potential benefits of adjusting 
TLR7 sensitivity in immature B cells. 
They proposed that targeting pDCs and 
I-IFN signalling pathways might effec-
tively regulate TLR7-mediated B-cell 
activation, consequently lowering the 
risk of pSS. Additionally, there exists a 
reciprocal amplification between TLR7 
and IFN; the activation of TLR7 stimu-
lates I-IFN production, which in turn 
boosts TLR7 signalling and immune re-
sponse. This suggests that future thera-
peutic interventions could involve drugs 
targeting TLR7 and agents that modu-
late IFN production (76). Given the 
roles of UNC93B1 and syntenin-1 in the 
TLR7 signalling process (Fig. 1), strate-
gies that regulate these entities present 
plausible therapeutic options (50-52). 
Furthermore, the transport mechanism 
of TLR7 can influence its expression 
and function within the ER. Agents like 
chloroquine or hydroxychloroquine 
might modulate the folding and trans-
port of TLR7 in the ER, subsequently 
reducing its expression and fulfilling 
therapeutic goals (74).
The activation of TLR7 can be modu-
lated for therapeutic purposes. In their 
research, Salvi et al. (61) employed syn-
thesised microRNA to pinpoint an IFN-
inducible motif that is vital for TLR7-
dependent activation, maturation, and 
survival of human pDCs. Their findings 
suggest that exosome-delivered micro-
RNA serves as an endogenous ligand of 
TLR7, contributing to pSS onset. This 
underscores the potential role of micro-
RNA as a novel pathogenic factor and 
a potential therapeutic target for IFN-
mediated diseases.
Modulating the downstream signalling 

pathway of TLR7 presents a potential 
therapeutic approach for pSS. Upon li-
gand binding to TLR7, its TIR domain 
interacts with various proteins, initiat-
ing downstream signalling. This TIR 
domain is therefore a critical target 
for drug development aimed at TLR7 
signalling. Decoy peptide inhibitors, 
derived from functional protein inter-
actions, maintain the binding affinity 
of the original protein to the target pro-
tein’s binding site, thereby inhibiting 
signal transmission. Given their ability 
to traverse cell membranes and operate 
intracellularly, cell-penetrating decoy 
peptide inhibitors hold promise for drug 
development and pSS treatment (77). 
Continued research is imperative to 
validate the efficacy of these prospec-
tive therapeutic targets and to formulate 
associated treatment strategies.

Conclusion
In conclusion, our comprehensive re-
view sheds light on the multifaceted im-
pact of TLR7 in the pathogenesis of pSS. 
The intricate interplay between TLR7 
gene polymorphisms, abnormal TLR7 
expression, and activation underscores 
its pivotal role in shaping the immune 
dysregulation observed in pSS patients. 
Genetic variations within TLR7, particu-
larly those associated with splicing vari-
ations and single nucleotide polymor-
phisms, contribute to the susceptibility 
and progression of pSS. While current 
research on TLR7 in pSS patients re-
mains limited, the correlation between 
TLR7 and pSS is not fully elucidated. 
Nonetheless, these investigations pro-
vide insights into the underlying patho-
physiological mechanisms of pSS, hold-
ing potential significance for diagnosis, 
disease activity monitoring, innovative 
treatments, and prognosis of pSS.
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