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ABSTRACT 
Patients with autoimmune disease-relat-
ed interstitial lung disease may develop 
pulmonary fibrosis, which may become 
progressive. Progressive pulmonary fi-
brosis (PPF) is associated with poor 
outcomes. Antifibrotic therapies have 
shown efficacy as treatments for PPF 
in patients with autoimmune diseases, 
but new treatments are needed to slow 
or halt disease progression. Phospho-
diesterases (PDEs) are enzymes that 
mediate the hydrolysis of cyclic adeno-
sine monophosphate (cAMP) and cyclic 
guanosine monophosphate (cGMP). 
Pre-clinical data suggest that preferen-
tial inhibition of PDE4B has the poten-
tial to slow the progression of pulmo-
nary fibrosis by inhibiting inflammatory 
and fibrotic pathways, with a lower risk 
of gastrointestinal adverse events than 
associated with pan-PDE4 inhibitors. 
Nerandomilast (BI 1015550) is a pref-
erential PDE4 inhibitor that has dem-
onstrated anti-inflammatory and antifi-
brotic effects in pre-clinical studies. In a 
phase II trial in patients with idiopathic 
pulmonary fibrosis, nerandomilast (giv-
en alone or on top of background anti-
fibrotic therapy) prevented a decrease 
in lung function over 12 weeks with an 
acceptable safety and tolerability pro-
file. The phase III FIBRONEER-ILD 
trial is evaluating the efficacy and safety 
of nerandomilast, given alone or on top 
of nintedanib, in patients with PPF, in-
cluding PPF associated with autoim-
mune diseases. In this article, we review 
the potential of PDE4B inhibition in the 
treatment of ILD associated with autoim-
mune diseases, including the pre-clinical 
and early clinical data available to date. 

Introduction
Patients with systemic autoimmune 
diseases are at risk of developing in-

terstitial lung disease (ILD) (1, 2). The 
pathogenesis of ILD associated with au-
toimmune diseases involves inflamma-
tory and fibrotic pathways (3). Inflam-
matory features, such as ground glass 
opacities, and fibrotic features such as 
traction bronchiectasis, may be evident 
on a high-resolution computed tomog-
raphy (HRCT) scan (4, 5). In patients 
with ILD due to rheumatoid arthritis 
(RA-ILD), the pattern most frequently 
observed on HRCT is usual interstitial 
pneumonia (UIP) (6). In other autoim-
mune disease-related ILDs, including 
ILD associated with systemic sclerosis 
(SSc-ILD) and myositis, the pattern 
most frequently observed is non-specif-
ic interstitial pneumonia (NSIP) (7-9). 
Patients with fibrotic ILD may develop 
progressive pulmonary fibrosis (PPF). 
A definition of PPF was proposed in a 
clinical practice guideline published by 
international pulmonology societies in 
2022 (10). In this guideline, PPF was 
defined as the unexplained occurrence 
of at least two of the following: 1) phys-
iologic progression of disease measured 
using pulmonary function tests; 2) ra-
diological indicators of disease progres-
sion; 3) deteriorating respiratory symp-
toms. Various studies assessing PPF 
using similar criteria have demonstrated 
that PPF portends a poor prognosis, 
with patients facing deteriorating lung 
function, worsening respiratory symp-
toms, and earlier mortality (11-15). 
Several studies have demonstrated that 
patients with autoimmune disease-re-
lated ILDs who develop PPF have poor 
outcomes (16-19). For example, in an 
analysis of claims data involving 2521 
patients with progressive fibrosing RA-
ILD and 907 patients with progressive 
fibrosing SSc-ILD, the median survival 
rates after eight years of follow-up 
were 28.9% and 26.7%, respectively 
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(17). Patients with autoimmune dis-
ease-related PPF based on decline in 
lung function have an increased risk of 
mortality (18, 19). Acute exacerbations 
of ILD, defined as acute worsening or 
development of dyspnea, new bilateral 
ground-glass opacity and/or consolida-
tion on CT, with the deterioration not 
fully explained by cardiac failure or 
fluid overload, may occur in patients 
with autoimmune disease-related ILD 
and are associated with high mortality 
(20, 21). 
Many patients with autoimmune dis-
ease-associated ILD receive immu-
nomodulatory therapy, but the efficacy 
of these therapies in slowing the pro-
gression of pulmonary fibrosis remains 
uncertain. Notably, pulmonary fibrosis 
linked to autoimmune disease demon-
strates a higher incidence within Black 
populations and has been associated 
with an increased utilisation of immu-
nomodulatory interventions among 
individuals of this racial demographic 
(22). The use of cyclophosphamide, 
mycophenolate and tocilizumab in the 
treatment of SSc-ILD is supported by 
evidence from randomised controlled 
trials (23-26). For other autoimmune 
disease-associated ILDs, most of the 
evidence to suggest a benefit of im-
munomodulatory therapies comes from 
retrospective or uncontrolled studies 
(27-29), but evidence from randomised 
controlled trials is building. In the ran-
domised RECITAL trial in patients with 
severe or progressive autoimmune dis-
ease-associated ILDs, forced vital ca-
pacity (FVC) improved over 24 weeks 
in patients who received rituximab 
(mean increase of 97 mL) or cyclo-
phosphamide (mean increase of 99 mL) 
(30). Fewer adverse events were report-
ed in the rituximab group than in the 
cyclophosphamide group (30). In the 
randomised EVER-ILD trial in patients 
with autoimmune disease-associated 
ILDs or idiopathic interstitial pneumo-
nia and an NSIP pattern, patients treat-
ed with mycophenolate and rituximab 
showed an increase in FVC % predicted 
of 1.6 over 6 months compared to a de-
cline in FVC % predicted of 2.0 among 
patients on mycophenolate and placebo 
(31). Viral infections were reported 
more frequently in patients treated with 

mycophenolate and rituximab than my-
cophenolate and placebo (31). In both 
the RECITAL and EVER-ILD trials, 
the effect of treatment appeared to be 
consistent across subgroups by diagno-
sis (30, 31).
Antifibrotic therapies (nintedanib and 
pirfenidone), originally developed as 
treatments for idiopathic pulmonary 
fibrosis (IPF) (32, 33), have shown ef-
ficacy as treatments for PPF in patients 
with autoimmune diseases (34-36). 
Based on the results of the INBUILD 
trial (37), nintedanib was approved by 
the FDA, EMA and other regulators for 
the treatment of progressive fibrosing 
ILDs of any aetiology. A clinical prac-
tice guideline published by internation-
al pulmonology societies in 2022 gave 
a conditional recommendation for the 
use of nintedanib in patients with PPF 
who have failed standard management 
for fibrotic ILD (10). 
Even for patients receiving standard of 
care therapy, PPF continues to progress 
and is associated with poor outcomes 
(38-40). There is a need for new treat-
ments that can be used alone or with ex-
isting therapies to slow or even halt the 
progression of PPF. In this article, we 
review the potential of phosphodiester-
ase 4B inhibition as a treatment for PPF 
associated with autoimmune diseases.

Phosphodiesterase 4 inhibitors 
Phosphodiesterases (PDEs) are en-
zymes that mediate the hydrolysis of cy-
clic adenosine monophosphate (cAMP) 
and cyclic guanosine monophosphate 
(cGMP) (41). cAMP and cGMP are 
second messengers that are central to 
signal transduction cascades regulating 
several processes, including cellular 
proliferation and differentiation, and in-
flammation (41). The PDE superfamily 
comprises 11 gene subfamilies (PDE1 
to PDE11), which vary in their distribu-
tion in cell and tissue types (41). PDE4 
is highly expressed in the brain (42), 
cardiovascular tissues (43), smooth 
muscle (44, 45), keratinocytes (46), 
and immune cells, including inflamma-
tory cells involved in the pathogenesis 
of inflammatory lung diseases (47-50). 
PDE4 is also expressed in lung adeno-
carcinoma, squamous and large cell 
carcinoma cell lines (51).

Inhibition of PDE4 increases levels 
of cAMP, reducing the release of pro-
inflammatory mediators and increas-
ing the synthesis of anti-inflammatory 
cytokines (52). PDE4 inhibition has 
shown anti-inflammatory effects in 
preclinical studies (53). In murine mac-
rophages, inhibition of PDE4 decreased 
production of inflammatory mediators 
such as nitric oxide, tumou Ir necro-
sis factor (TNF)-α, and interleukin-1β 
(54). In mice with bleomycin-induced 
pulmonary fibrosis, PDE4 inhibition 
reduced the total number of alveolar 
inflammatory cells and the number of 
macrophages and lymphocytes in bron-
choalveolar lavage fluid (BALF) (55). 
Pre-clinical studies have also shown 
that PDE4 inhibitors have antifibrotic 
effects and may reduce fibrotic remod-
elling in the lung (55-58). In mice with 
bleomycin-induced pulmonary fibrosis, 
PDE4 inhibition reduced the extent of 
fibrosis in the lungs (55). In mice with 
fibrosis induced by type II alveolar 
epithelial cell injury via intraperito-
neal Diphtheria toxin, PDE4 inhibition 
ameliorated lung collagen accumula-
tion and weight loss, with effects that 
were equivalent to those of pirfenidone 
or nintedanib (58). These activities sug-
gest a potential role for PDE4 inhibition 
in the treatment of PPF.

The PDE4B subtype 
The PDE4B subtype has five variants 
(PDE4B1 to 5) and is widely distribut-
ed, including in the brain (42, 59), lung 
(59, 60), heart (43, 61) and immune 
cells (47, 50, 62) (Table I). PDE4B 
plays roles in inflammation and fibro-
sis. Studies in mouse peritoneal mac-
rophages and monocytes/macrophages 
from BALF have shown that lipopoly-
saccharide (LPS) stimulation of Toll-
like receptors leads to upregulation of 
PDE4B but not PDE4A or PDE4D (63, 
64). Ablation of the gene for PDE4B 
blunted the TNF-α response (63,64). 
PDE4B is essential for the development 
of airway hyperresponsiveness and in-
duction of T helper 2 (Th2)-cell func-
tions in bronchial lymph node cells from 
mice (65). In human lung fibroblasts, 
knockdown of PDE4A or PDE4B in-
hibited proliferation and differentiation 
into myofibroblasts, while knockdown 
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of PDE4D was ineffective (66). These 
data suggest that preferential inhibition 
of PDE4B has the potential to slow the 
progression of pulmonary fibrosis by 
inhibiting inflammatory and fibrotic 
pathways (Fig. 1). 
Pan-PDE4 inhibitors are associated 
with gastrointestinal adverse events (67, 
68). Pre-clinical studies suggest that 
inhibition of PDE4D, but not PDE4B, 
may promote emesis (69, 70), suggest-
ing that preferential PDE4B inhibitors 
will have fewer gastrointestinal adverse 
events than pan-PDE4 inhibitors. In 
Suncus murinus, after administration 
of the PDE4B inhibitor nerandomilast 
(at 10 times the effective dose for half-
maximal inhibition [ED50]) to 24 ani-
mals, 21% showed emesis, compared 
to 42% of animals treated with the pan-
PDE4 inhibitor roflumilast at 10 times 
the effective dose for ED50 (71).

Nerandomilast, a preferential 
PDE4B inhibitor
Nerandomilast is a preferential PDE4 
inhibitor that has approximately ten-fold 
selectivity for PDE4B versus PDE4D 
(71). Nerandomilast has demonstrated 
anti-inflammatory effects in pre-clinical 

studies (71). In human peripheral blood 
mononuclear cells, nerandomilast inhib-
ited synthesis of LPS-induced TNF-α 
and phytohemagglutinin-induced inter-
leukin-2 (71). In human and rat whole 
blood, nerandomilast inhibited LPS-
induced synthesis of TNF-α. In mice, 
nerandomilast inhibited LPS-induced 
TNF-α release. In Suncus murinus and 
rats, nerandomilast inhibited LPS-in-
duced neutrophil influx into the BALF 
(71). Pre-clinical studies have also 
shown that nerandomilast has antifibrot-
ic effects (71). In lung fibroblasts from 
patients with IPF, nerandomilast inhib-
ited transforming growth factor (TGF)-
β1-stimulated transformation into my-
ofibroblasts, expression of mRNAs for 
extracellular matrix proteins, and cell 
proliferation induced by interleukin-1β 
plus fibroblast growth factor. A combi-
nation of nerandomilast and nintedanib 
showed a synergistic effect on cell pro-
liferation in this model. In mice with 
bleomycin-induced pulmonary fibrosis, 
nerandomilast was associated with an 
improvement in FVC and a reduction in 
fibrotic tissue in the lungs (71). In rats 
with bleomycin-induced pulmonary fi-
brosis, nerandomilast was associated 

with an improvement in lung volume 
and reduction in tissue density, and re-
versed transcription changes relevant to 
fibrosis (72). In a Phase II trial in pa-
tients with IPF, nerandomilast had small 
but significant effects on the expression 
of genes associated with inflamma-
tion and fibrosis, which correlated with 
changes in FVC over 12 weeks (73).

Phase I and II trials of 
nerandomilast 
In Phase I studies in healthy subjects and 
patients with IPF, single rising doses of 
nerandomilast 36 mg and 48 mg and 
multiple rising doses of nerandomi-
last 6 mg and 12 mg twice daily (BID) 
over 14 days had an acceptable safety 
and tolerability profile (74). A Phase II 
randomised placebo-controlled trial of 
nerandomilast 18 mg BID was conduct-
ed in 147 patients with IPF (75). Among 
73 patients not on background antifi-
brotic therapy, mean age was 70.6 years, 
FVC was 81.0% predicted and diffusing 
capacity of the lungs for carbon monox-
ide (DLco) was 50.7% predicted, while 
among 74 patients on background antifi-
brotic therapy, mean age was 68.7 years, 
FVC was 74.4% predicted and DLco 

Table I. Effects of PDE4B inhibition.

Cell/tissue Effects of PDE4B inhibition

Lungs •  Reduced profibrotic activity of lung fibroblasts from patients with IPF; attenuated TGF-β-induced expression of 
genes for collagen and fibronectin; reduced bFGF plus IL-1β-induced cell proliferation (71)

 •  Reduced silica-induced macrophage influx into the BALF (Suncus murinus) (71)
 •  Reduced LPS-induced neutrophil influx into the BALF (Suncus murinus and Wistar rats) (71)
 •  Improved lung volume, reduced tissue density, reversed transcription changes relevant to fibrosis (rats) (72).
 •  Reduced IPF-associated protein levels in human myofibroblasts and small airway epithelial cells (72).

Brain •  Reduced Th2 differentiation and increased Th17 differentiation in dendritic cells (mouse) (81)
 •  Reduced striatal dopamine and 5-hydroxytryptamine activity, associated with reduced pre-pulse inhibition and 

motor activity (PDE4B knockout mouse) (82)
 •  Reduced anxiogenic-like behaviour (PDE4B knockout mouse) (83)

Cardiovascular •  Reduced neutrophil-mediated inflammation, improved microvascular perfusion, and reduced infarct size after 
myocardial ischaemia-reperfusion (PDE4B knockout mouse). Reversed acute myocardial infarction-induced en-
dothelium dysfunction in coronary small arteries (PDE4B knockout mouse and human) (61)

 •  Improved cardiac contractility (PDE4B knockout mouse) (61, 84)

Gastrointestinal •  The emetic potential of PDE4B inhibitors is lower than that of pan-PDE4 inhibitors (Suncus murinus) (71)

Peripheral blood mononuclear cells •  Reduced LPS-induced release of TNF-αand phytohemagglutinin P-induced release of IL-2 (human) (71)

Whole blood •  Reduced LPS-induced release of TNF-α (rat and human) and increased LPS-induced release of IL-6 (rat) (71)

BALF: bronchoalveolar lavage fluid; Col: collagen type; FGF: fibroblast growth factor; FN: fibronectin; IL-1β: interleukin-1ß; IL-2: interleukin-2; IPF: idio-
pathic pulmonary fibrosis; LPS: lipopolysaccharide; PDE4B: phosphodiesterase 4B; TGF-β: transforming growth factor-ß; Th: T helper; TNF-α: tumour 
necrosis factor-α.
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was 48.4% predicted (75). Taken alone 
or on top of background antifibrotic 
therapy (nintedanib or pirfenidone), 
nerandomilast prevented a decrease in 
lung function over 12 weeks. Among pa-
tients not taking background antifibrotic 
therapy, the median change in FVC from 
baseline to week 12 was 5.7 mL in the 
nerandomilast group and -81.7 mL in 
the placebo group. Among patients tak-
ing background antifibrotic therapy, the 
median change in FVC was 2.7 mL in 
the nerandomilast group and –59.2 mL 
in the placebo group (75). The pattern 
of change in forced expiratory volume 
in one second (FEV1) was similar to the 
pattern of change in FVC over 12 weeks, 
suggesting that the early treatment effect 
of BI 1015550 in patients with IPF was 
not mediated by bronchodilation (76). A 
post-hoc analysis suggested that there 
was an additive effect of nerandomi-
last and nintedanib: the adjusted mean 
increase in FVC at week 12 in patients 
treated with nerandomilast was 6.1 mL 
in patients not taking background anti-

fibrotic therapy and 23.4 mL in patients 
taking nintedanib (77). 
The most common adverse events re-
ported in the Phase II trial were gas-
trointestinal disorders, which were re-
ported, respectively, in 27% and 16% of 
those who received nerandomilast and 
placebo in the absence of background 
antifibrotic therapy, and in 37% and 
32% of those who received nerandomi-
last and placebo plus background anti-
fibrotic therapy (75). The most frequent 
adverse event was diarrhea. Adverse 
events led to discontinuation of neran-
domilast in 6% of patients who received 
nerandomilast and no background an-
tifibrotic therapy and in 20% of those 
who received nerandomilast plus back-
ground antifibrotic therapy (75).

The FIBRONEER trials 
The Phase III trials of nerandomilast 
are known as the FIBRONEER trials. 
FIBRONEER-ILD (NCT05321082) is 
a randomised placebo-controlled trial 
investigating the efficacy and safety of 

nerandomilast, with or without back-
ground nintedanib, in patients with 
PPF of any aetiology (but not IPF) 
(78). Participants must meet one of the 
following criteria for ILD progression 
within the prior 24 months: relative 
decline in FVC% predicted of ≥10%; 
decline in FVC% predicted of ≥5 to 
<10% with worsened respiratory symp-
toms and/or increased extent of fibrotic 
changes on imaging; worsened respira-
tory symptoms and an increased extent 
of fibrotic changes on imaging. These 
are the same inclusion criteria used 
in the INBUILD trial and differ from 
the criteria for the definition of PPF 
published by international pulmonol-
ogy societies in 2022 (10). Participants 
must have received nintedanib for ≥12 
weeks (stable therapy), or not received 
nintedanib for ≥8 weeks (naive or pre-
viously discontinued), prior to screen-
ing. Treatment with pirfenidone is not 
permitted, as this is not a licensed treat-
ment for PPF other than IPF. The use 
of certain immunomodulatory agents 

Fig. 1. Mechanism of action of phosphodiesterase 4B (PDE4B) inhibition in the treatment of pulmonary fibrosis.
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(cyclophosphamide, tocilizumab, my-
cophenolate, rituximab) and high-dose 
steroids (prednisone >15 mg/day or 
equivalent) are not permitted at ran-
domisation; patients on stable treat-
ment with other immunomodulatory 
agents may continue to take them. Dur-
ing the treatment period, prednisone 
>15 mg/day or equivalent can be pre-
scribed in case of suspected acute exac-
erbation and, after 6 months, changes 
in immunomodulatory treatment are 
permitted to manage worsening of un-
derlying disease. Among patients not 
receiving nintedanib at enrolment, ini-
tiation of nintedanib is allowed after 12 
weeks in case of disease worsening or 
acute exacerbation of ILD. 
Participants will be randomised 1:1:1 
to receive nerandomilast 9 mg BID, BI 
1015550 18 mg BID, or placebo BID 
until the last patient has reached week 
52. It is planned that 1041 patients will 
be enrolled. The primary endpoint is the 
absolute change from baseline in FVC 
(mL) at week 52. The key secondary 
endpoint is the time to first acute ex-
acerbation, hospitalisation for respira-
tory cause, or death over the whole trial. 
Changes in cough, dyspnea and fatigue 
scores using the Living with Pulmonary 
Fibrosis (L-PF) questionnaire (79) at 
week 52 will be measured as other sec-
ondary endpoints. 
A Phase III trial in patients with IPF, 
FIBRONEER-IPF (NCT05321069), is 
also being conducted, with a similar 
design, but with background therapy 
with nintedanib or pirfenidone being 
permitted (80). 

Conclusions
PPF in patients with autoimmune dis-
eases is associated with substantial mor-
bidity and mortality. There is a need for 
additional treatments for PPF associated 
with autoimmune diseases that can be 
used alone or in combination with ex-
isting therapies. Inhibition of PDE4B 
has anti-inflammatory and antifibrotic 
effects, suggesting that PDE4B inhibi-
tors have the potential to be effective in 
the treatment of PPF associated with au-
toimmune diseases. The FIBRONEER-
ILD trial will evaluate the efficacy and 
safety of the preferential PDE4B inhibi-
tor nerandomilast in patients with PPF, 

including PPF associated with autoim-
mune diseases. 
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