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ABSTRACT
The relationship between intestinal 
microbiota and arthritis has garnered 
significant attention, with emerging evi-
dence suggesting a potential association 
between dysbiosis and various forms of 
inflammatory arthropathies. While ob-
servational studies have provided valu-
able insights into microbiota alterations 
in patients with arthritis, establishing 
causality remains challenging. 
Observational data, influenced by 
multiple confounders such as envi-
ronmental factors, medication effects, 
and dietary habits, are insufficient to 
conclusively determine whether micro-
biota changes are somehow causally 
linked to arthritis. The heterogeneity 
of results across independent studies 
further complicates interpretation. To 
further support this hypothesis, inter-
ventional randomised trials are deemed 
necessary, yet their implementation in 
this area presents significant technical 
limitations.
Experimental animal models offer in-
sights into potential pathogenic mech-
anisms linking dysbiosis to arthritis, 
including compromised intestinal bar-
rier function, the role of microbiota-
derived metabolites and molecular 
mimicry. However, conflicting findings 
underscore the complexity of host-
microbiota interactions and the chal-
lenges in establishing causality.
Efforts to modulate the microbiota for 
arthritis treatment or prevention have 
shown promise, yet efficacy and appli-
cability remains uncertain. Antibacte-
rial drugs, dietary interventions, probi-
otics, and faecal microbiota transplan-
tation have been explored, but their 
clinical utility awaits further valida-
tion. In conclusion, while the associa-
tion between intestinal microbiota and 
arthritis is increasingly recognised, 
establishing causality remains elusive.

Introduction
Through the millennia, humans devel-
oped a close relationship with a huge 
number of bacteria, mostly hosted in 
the digestive tract. Gut microbiota, in 
fact, comprises 1000–5000 diverse 
species of microorganisms, 99% of 
whom belong to the phyla Firmicutes, 
Bacteroidetes, Proteobacteria, and 
Actinobacteria (1). The relationship is 
not passive and biological processes 
with mutual advantages take place (2). 
Unfortunately, an association between 
changes of the microbiota and a wide 
spectrum of diseases has been unequiv-
ocally demonstrated.
Modern DNA sequencing technologies 
enhabled us to study human microbiota 
and its alterations in a variety of condi-
tions, including various forms of arthri-
tis, and the correlation between gut dys-
biosis and inflammatory arthropathies 
is now clear. Correlations, however, do 
not necessarily entail causation, whose 
ascertainment presents numerous hur-
dles that are not easily overcome. The 
most obvious question arising is wheth-
er microbiota alterations observed in a 
disease occur as a consequence of sys-
temic inflammation and autoimmunity, 
or if they have a causative role in the 
initial loss of tolerance observed in au-
toimmune and inflammatory diseases, 
or, finally, whether no causal relation is 
present (3-5). 
Doubtlessly, from a temporal point of 
view, changes of the microbiota can 
occur before disease onset, as clearly 
shown by multiple studies in pre-clini-
cal rheumatoid arthritis (RA) (6-10). In 
fact, patients with autoantibodies or ge-
netic risk factors, showed gut microbio-
ta alterations well before RA onset (11). 
However, these findings are not enough 
to establish causality, nor its direction.
In this paper, we will try to review and 
summarise the main data available on 
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dysbiosis in inflammatory arthritides, 
with a focus on likely causative mecha-
nisms. We will also try to underline the 
complexity of this research field and to 
show why obtaining a final answer to 
the question is a remote goal.
Current evidence is mostly of obser-
vational nature and the results of a sig-
nificant number of independent studies 
are very heterogeneous with numerous 
and distinct bacterial species found to 
be involved. For this reason and due to 
the overall poor results obtained with 
treatment strategies trying to modify 
gut bacterial composition it is however 
clear that intestinal dysbiosis cannot be 
an independent cause of disease devel-
opment (7, 8).

Microbiota alterations and 
inflammatory arthropathies
Rheumatoid arthritis
Doubtlessly, RA is the form of arthritis 
with the greatest amount of research 
on this topic. RA is particularly useful 
as a model to study causality, due to its 
extended period of seropositivity pre-
ceding disease onset, which is usually 
defined as the pre-clinical phase (3). Ev-
idence from epidemiological and trans-
lational studies indicates that mucosal 
environmental exposures and dysbiosis 
play causal roles during this period in 
the development of RA (12-15). No-
tably, mucosal sites, including the oral 
and intestinal mucosa, might be the lo-
cation where autoimmunity begins, due 
to the ability of microbes and their me-
tabolites to influence and modulate the 
function of the host immune system (1).
The vast majority of data suggesting a 
potential relationship between rheumat-
ic diseases and microbiota alterations 
comes from cross-sectional and case-
control studies comparing patients with 
healthy controls or first-degree relatives 
(16, 17). Unfortunately, the results of 
these studies display a certain degree 
of inconsistency. Albeit most studies 
found an increase in Prevotellaceae 
(6, 11, 12, 18) and a decrease in Bac-
teroides and Bifidobacteriaceae (7, 8, 
12), other data show a decreased preva-
lence of Bifidobacteria with a simul-
taneous increase of Bacteroides in RA 
patients(8). Additionally, other stud-
ies found changes in the concentration 

of other bacterial populations, such as 
Collinsella, Eggerthella, and Faecali-
bacterium (9). Differences in the meth-
odological approach to the analysis of 
microbiota are the most likely cause of 
discordance among studies, together 
with multiple variables with unequivo-
cal impact on microbiota composition.
Nevertheless, we must keep in mind that 
observational studies do not allow to 
establish causal relationships, which in-
evitably require experimental evidence. 
However, in this area, this is of very dif-
ficult applicability in humans, therefore 
most studies focused on animal mod-
els of arthritis. Nonetheless, even ex-
perimental models provided conflicting 
results. As an example, a study by Liu 
et al. found substantial changes in gut 
microbial community of a collagen in-
duced arthritis (CIA) model, especially 
an increased representation in Bacte-
roidaceae and Lachnospiraceae and a 
reduction in Lactobacillaceae (4, 19). 
However, in the same model of disease, 
Rogier et al. (20) showed a reduction in 
Bacteroidaceae family in the preclinical 
phase of CIA, and an increased amount 
of Firmicutes and Proteobacteria.
Evidence in favour of dysbiosis as a 
cause of arthritis arises from other in-
teresting models (10). Inoculating fae-
cal samples from early RA patients into 
germ-free arthritis prone SKG mice, an 
increased prevalence of Prevotellaceae, 
especially Prevotella copri (P. copri) 
and reduction of Bacteroidaceae was 
found after 20 weeks of colonisation, 
compared to mice inoculated with fae-
cal samples from healthy subjects. Ad-
ditionally, the former mice showed an 
increased number of intestinal T helper 
17 (Th17) cells and a more severe form 
of arthritis.
Another useful arthritis model is found 
in K/BxN mice, expressing the trans-
genic T cell receptor (TCR) KRN and 
the MHC class II allele Ag7. They uni-
formly develop severe inflammatory 
arthritis due to high levels of autoan-
tibodies directed against the glycolytic 
enzyme glucose-6-phosphate isomerase 
(GPI) (21). In germ-free K/B×N mice, 
the severity of arthritis was greatly re-
duced along with sharp reductions in 
serum concentrations of autoantibodies 
and the number of splenic Th17 cells 

and germinal centre formation. Addi-
tionally, when segmented filamentous 
bacteria (SFB) were subsequently in-
troduced a Th17 cells accumulation in 
the lamina propria and the development 
of arthritis was observed (22-25). An 
increased Th17/Treg ratio is also ob-
served in RA, and the balance of this 
ratio is known to be strongly regulated 
by gut microbiota and their metabolites 
(24, 26).

Psoriatic disease
In patients with psoriasis and psoriatic 
arthritis (PsA) we may find an increase 
of Actinobacteria and Firmicutes and 
also of the Firmicutes-to-Bacteroides 
(F/B) ratio, expressing impaired gut 
epithelial barrier, in a similar manner 
to that observed in patients with in-
flammatory bowel diseases, obesity, 
type 2 diabetes and cardiovascular co-
morbidities (27, 28). More in detail, an 
underrepresentation of Faecalibacte-
rium prausnitzii, Bifidobacterium spp., 
Lactobacillus spp., Parabacteroideand 
Coprobacillus, and an increase of Sal-
monella sp., Campylobacter sp., Heli-
cobacter sp., Escherichia coli, Alcali-
genes sp. and Mycobacterium has been 
observed (27). Cho et al. (29) showed 
an elevated F/B ratio in patients pro-
ducing increased amounts of trimeth-
ylamine-N-oxide (TMAO). In fact, 
a high F/B ratio is associated with an 
increased abundance of bacteria capa-
ble of metabolising carnitine to TMA, 
which in turn alters cholesterol turnover 
and induces macrophage activity, con-
sequently promoting atherosclerosis. 
Another significant consequence of an 
increased F/B ratio is an altered produc-
tion of short-chain fatty acids (SCFA)
and medium-chain fatty acids (MCFA)
with an increased bacterial synthesis of 
acetate and decrease synthesis of bu-
tyrate. The beneficial role of SCFAs on 
the balance of intestinal microbiota has 
been widely demonstrated and will be 
discussed further, whereas data about 
MCFAs are not as consistent. Multiple 
studies, in fact, showed that MCFAs 
may contribute to the differentiation of 
murine and human CD4+ naive T cells 
into Th1 and Th17 phenotypes, thus ex-
erting a pro-inflammatory action. How-
ever, this seems to be in contrast with 
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findings showing a reduced amount of 
MCFAs in faecal samples of patients 
with arthritis (28, 30).

Juvenile idiopathic arthritis 
Various studies have been carried out in 
patients with Juvenile Idiopathic Arthri-
tis (JIA), mostly showing an increase of 
Bacteroidetes/Bacteroides, especially 
Bacteroides fragilis. Results suggesting 
a reduction of Firmicutes, instead, do 
not show consistency (31-33).

Ankylosing spondylitis 
Certain bacteria, including Bacteroides 
coprophilus, Parabacteroides dista-
sonis, Eubacterium siraeum, were 
found to be enriched in AS patients 
(34). Additionally, Klebsiella abun-
dance appears to be linked to disease 
activity and Actinobacteria may be able 
to promote inflammation by activating 
NF-κB signalling (35).
Most of the currently available evi-
dence, however, highlights the con-
cept that instestinal gut dysbiosis may 
increase AS risk by interacting with 
environmental exposure and various 
genetic factors,in particular human leu-
kocyte antigen (HLA)-B27; in murine 
models, the interaction between this 
allele and gut microbiota lead to the 
activation of the interleukin (IL)-23/IL-
17 axis (36-39). IL-23, which plays a 
central role in the development of AS,is 
mostly secreted by dendritic cells and 
macrophages and promotes the dif-
ferentiation and maintenance of Th17 
cells which, in turn, are responsible of 
a significant pro-inflammatory cascade 
in spondyloarthritis (SpA) (38, 40). Ad-
ditionally, an intereaction between the 
microbiota and IL-17/IL-22-producing 
innate lymphoid cells (ILC) type 3, has 
been demonstrated (39, 41).

Gout and hyperuricaemia
Evidence in this field is limited and 
mostly observational and speculative. 
Overall, it seems that patients with gout 
and hyperuricaemia show a reduction 
in microbiota diversity (42). In fact, 
a higher F/B ratio and a lower Prevo-
tella-to-Bacteroides ratio has been de-
scribed in patients with hyperuricaemia 
(43), while gout patients display a rela-
tive abundance of Prevotella, Fuso-

bacterium and Bacteroides and a lower 
prevalence of Enterobacteriaceae and 
butyrate-producing species (44, 45).

Pathogenic insights
As alreday stated, the vast majority 
of studies performed on the topic are 
observational. This is likely the main 
reason why a clear causal relationship 
between microbiota changes and in-
flammatory arthritis has not yet been 
demonstrated in either direction. Most 
of the evidence in support of the hy-
pothesis that dysbiosis can contribute 
to the development of inflammatory ar-
thritis comes from observational stud-
ies and from animal models. Multiple 
pathogenic mechanisms have been sug-
gested to contribute to the induction of 
autoimmunity and to the transition from 
the preclinical phase of the disease to 
the initiation and progression of ar-
thritis due to microbiota dysbiosis (1, 
4, 19, 20, 46). These encompass com-
promised intestinal barrier function, 
metabolites originating from the mi-
crobiota, molecular mimicry, immune 
responses induced by the microbiota, 
autophagy of intestinal epithelial cells 
(IECs), and alterations in microRNA 
(miRNA) expression (46).

Intestinal barrier dysfunction
Histological analysis of intestinal tissue 
from individuals with established RA 
revealed distinctive features in approxi-
mately 15% of patients, such as partial 
or complete loss of the superficial epi-
thelium, elevated numbers of plasma 
cells and granulocytes and the presence 
of vasculitic lesions (4, 47). Similarly, 
another study enrolling a small group 
of patients with early RA revealed sub-
clinical gut inflammation in nearly all 
participants. In particular, an increased 
prevalence of infiltrating mononuclear 
cells, T cells, B cells, and CD68+ mac-
rophages was detected, along with lym-
phoid follicles (48).
A disruption of the intestinal barrier has 
thus unequivocally been demonstrated 
as one of the potential mechanisms 
linking dysbiosis and inflammation. 
The primary mechanism linking gut 
epithelial barrier disruption and micro-
biota alterations seems to be zonulin 
production. Zonulin is an enterotoxin 

secreted by IECs after stimulation by 
dysbiotic bacteria or diet (e.g. gluten 
may contribute too), which determines 
the disassembly of the proteins zonula-
occludens 1 (ZO1) and occludin from 
the tight junction complex, thus in-
creasing intercellular permeability. In 
fact, the transfer of human gut-derived 
Prevotella histicola to mice with CIA 
resulted in decreased arthritis severity, 
reduced intestinal permeability and in-
creased expression of ZO1 in the jeju-
num, ileum and colon (4).
Barrier integrity is also affected by 
SCFAs, particularly butyrate, which is 
capable of enhancing its stability by 
promoting the production of the tight 
junction protein mucin 2 (49). Conse-
quently, barrier function is impaired in 
case of reduced butyrate production by 
the intestinal microbiota. The role of 
SCFAs has been very briefly mentioned 
above and will be further discussed in 
detail in the following paragraph.

Gut microbiota-derived metabolites
Metabolites derived from gut microbio-
ta play a role in regulating the integrity 
of the intestinal barrier through vari-
ous mechanisms (1, 4, 39, 49-52). As 
SCFAs are primarly produced by some 
intestinal bacteria, alterations in gut mi-
crobiome composition, particularly the 
abundance of certain genera like Collin-
sella, Fusicatenibacter and Megamonas 
may contribute to changes in their levels 
(53). Bacteria such as Escherichia coli 
and Streptococcus bovis appear to be 
linked to higher degradation of ascorbic 
acid leading to increased serum levels 
of pro-inflammatory cytokines such as 
TNF-α and IL-6 in RA patients (46). 
Additionally, evidence shows a higher 
abundance of specific bacteria like P. 
copri, Verrucomicrobia and Akkerman-
sia in the pre-clinical and clinical phas-
es of RA, altering the metabolite levels 
and probably contributing to disease 
development. As an example, P. copri 
correlates to serum concentrations of 
arachidonic acid-derived inflammatory 
mediators including prostaglandins and 
leukotrienes (46, 54).
Decreased levels of SCFAs are detect-
able in both RA patients and animal 
models, with SCFAs supplementation 
showing reduced disease severity in 
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various RA mouse models, including 
CIA and K/BxN serum-transfer arthri-
tis (46). SCFAs can induce metabolic 
alterations in T cells by activating 
the mammalian target of rapamycin 
(mTOR) complex and by modulating 
glucose metabolism (1). In particular, 
propionic acid, valeric acid and butyric 
acid are those with the largest amount 
of supporting evidence in favour of an 
anti-inflammatory effect. More specifi-
cally, propionic acid induces Th2 cell 
suppression and promotes Treg dif-
ferentiation (55), valeric acid induces 
IL-10 production in regulatory B cells 
through enhanced mTOR activity and 
suppresses the generation of intestinal 
Th17 cells (56) and, finally, butyric 
acid, a functional SCFA produced by 
the anaerobic gut microbiota, is in-
volved in T cells polarisation towards 
Treg cells in the spleen, proinflammato-
ry cytokine down-regulation, decrease 
of systemic Th17 cells and inhibition of 
autoantibody production (1, 46).
SCFAs also play a key role in psoriasis 
and PsA, where the intestinal dysbio-
sis appears to be characterised by a re-
duction in the occurrence of butyrate-
producing bacteria (27, 57). As an 
example, there is evidence in psoriatic 
patients of underrepresentation of F. 
prausnitzii and Akkermansia mucin-
iphila, which have an important anti-
oxidant activity by producing butyrates 
and inhibiting NF-κB, also providing 
energy to the IECs. Moreover, SCFAs 
are responsible of blocking IL-6 pro-
duction, thus reducing intestinal in-
flammation (27, 51).

Molecular mimicry 
and autophagy of IECs 
Molecular mimicry is another classic 
mechanism involved in the develop-
ment of autoimmunity in a broader 
sense and numerous clues suggest it 
is likely a major aspect of a potential 
pathogenic role of the intestinal mi-
crobiota (46). In fact, many identical 
peptides between human tissues and 
gut microbes are able to bind HLA-II 
alleles (23). Bacterial species showing 
the highest impact in genetically sus-
ceptible individuals belong to the Fir-
micutes and Proteobacteria (23).
It is known that peptides from Bacte-

roides, Eggerthella, Citrobater and 
Clostridium may share molecular 
mimicry with collagen XI and HLA-
DRB1*0401. Collagen XI is present in 
articular cartilage and it can be used to 
induce arthritis in DBA/1 mice. HLA-
DRB1*0401 is involved in the process 
of arthritogenic self-peptides presenta-
tion and, as an example, the presence 
of shared sequences with Collinsella 
genome suggested that this gut bacteria 
may contribute to the induction of RA 
(23, 46).
Another link between the mucosal and 
joint immunity may be provided by the 
sequence homology expressed by pep-
tides tipically found in the synovium, 
like N-acetylglucosamine-6-sulfatase 
(GNS) with epitopes from sulfatase 
proteins of Prevotella and Parabac-
teroides sp., and another, filamin A 
(FLNA), with epitopes from proteins 
of Prevotella and Butyricimonas sp. 
(58). According to these data, GNS and 
FLNA were identified as T- and B-cell-
targeted autoantigens in more than 50% 
of RA patients, representing a mecha-
nism by which Prevotella contributes to 
RA progression (46).
Another potential mechanism that con-
tributes to maintaining the balance of 
intestinal microbiota is autophagy. In 
fact, deficiency of colonic epithelial 
cell-specific autophagy related gene 
(Atg) results in an imbalance in host 
microbiome, leading to an increase of 
B. fragilis, Clostridium leptum, Eubac-
terium cylindroides and Prevotella in 
mice models, along with a decrease in 
Lachnospiraceae and Ruminococcace-
ae, which are known to exert an anti-in-
flammatory activity (59, 60). Addition-
ally, supplementation of the autophagy 
inducer spermidine in mouse models 
promoted the expansion of Firmicutes 
(61).
 
Modulating the microbiota 
to treat arthritis
In light of the evidence in favour of a  
potential contribution of the microbiota 
to the development of inflammatory ar-
thritis, it is reasonable to hypothesise 
that its modulation may have a role in 
the treatment or prevention of the dis-
ease. However, it should be kept in mind 
that once the disease is established, res-

toration of the microbiota is unlikely go-
ing to be effective. Thus, any potential 
intervention on the microbiota should 
take place very early in the disease de-
velopment, ideally even before it is cur-
rently possible to detect autoimmunity 
(4, 5, 25, 38, 46, 50, 62-66).
One of the possible ways to modulate 
the intestinal microbiota is through the 
administration of antibacterial drugs. 
Studies on CIA models have demon-
strated that the elimination of intestinal 
microbiota may reduce arthritis sever-
ity, perhaps via an inhibitory activity on 
the Th17 axis (65). For instance, tetra-
cyclines like minocycline may reduce 
microbial taxa tipically overexpressed 
in RA, such as Actinobacteria and Fir-
micutes (67).
It has also been widely demonstrated 
that the composition of gut microbiota 
is heavily dependent on diet. Conse-
quently, it is also reasonable to suppose 
that changing dietary habits may modu-
late the microbiota and, eventually, af-
fect the onset of autoimmunity (4, 25, 
63, 64, 68). 
The evidence available on this spe-
cific aspect is overall scarcely consist-
ent. The most scientifically reasonable 
approach, at the moment, seems to be 
the mediterranean diet (MD) (25, 62), 
typically rich in vegetables, cereals, 
legumes, olive oil and a limited amount 
of dairy products. The MD demonstrat-
ed anti-inflammatory and antioxidant 
properties thanks to the high concentra-
tion of n-3 polyunsaturated fatty acids 
(PUFAs), monounsaturated fatty acids 
(MUFAs), fibres and polyphenols. Die-
tary supplementation of n-3 PUFAs has 
proven to be effective in reducing pain 
and improving other clinical outcomes 
such as tender and swollen joints count 
(68, 69). A better adherence to the MD 
has been linked to higher concentrations 
of Bacteroidetes and Firmicutes, as 
well as faecal butyrate and propionate 
(70). Fibre, a foundamental component 
of MD, has been shown to contribute to 
an increase of SCFAs concentration by 
restoring microbial composition (71). 
SCFAs, in turn, may modulate the be-
haviour of T cells and ILC3 by directly 
binding to the free-fatty acid receptor 2 
(FFAR2) (52, 72).
The importance of SCFAs in mantain-
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ing the balance between gut microbiota 
and the immune system may be further 
underlined by examining the data avail-
able on the role of butyrate supplemen-
tation. It has in fact been demonstrated 
that butyrate may suppress arthritis by 
increasing the level of the serotonin-
derived metabolite 5-hydroxyndole-
3-acetic acid (5-HIAA), which, in turn, 
activates the aryl-hydrocarbon receptor 
(AhR), thus supporting Breg function 
and inhibiting B cell differentiation in 
germinal centres (50). Finally, berber-
ine, a dietary supplement, seems to be 
able to promote the growth of SCFAs-
producing bacteria and downregulate 
Prevotella spp. (25, 65). However, little 
research has been done to assess the po-
tential use of SCFAs as modulators of 
the microbiota (25, 73). 
Along with antimicrobial and dietary 
interventions, the composition of the 
intestinal microbiota can also be modu-
lated through the use of probiotics. Al-
though data are conflicting and a thera-
peutic effect of probiotics on arthritis 
has not been demonstrated (74, 75), 
modulation of the immune response 
through probiotics has been demon-
strated both in humans and in animal 
models. These effects seem to be spe-
cies-specific, with Lactobacillus casei 
(L. casei) that may be able to reduce 
IL-12 and TNF-α levels and increase 
IL-10 in RA patients (76), while also 
reducing the severity of CIA in mice 
(77, 78). Lactobacillus acidophilus and 
Bifidobacterium bifidum have also been 
linked to an improvement in markers of 
inflammation (79).
Another significant limitation in the 
investigation of a link between micro-
biota and arthritis is due to the con-
founding effect of pharmacotherapy. 
It is, in fact, very likely that immu-
nomodulating compounds used for the 
treatment of arthritis may modulate the 
microbiota, also independently of their 
effect on the disease. As an example, 
oral methotrexate therapy is linked to a 
relative reduction of Enterobacteriales 
and Bacteroides fragilis (80), in favour 
of Lactobacillus salivarus and some 
Firmicutes in the oral cavity (81). Simi-
larly, sulfasalazine seems to protect the 
integrity of the intestinal epithelium, 
thus reducing microbial translocation 

through the intestinal mucosal barrier 
(4, 65). Moreover, hydroxychloroquine 
appears to restore bacterial diversity, 
particularly enhancing Faecalibacte-
rium spp (4, 9, 82).
Limited data are also available on TNF 
inhibitors. As an example, etanercept 
seems to reduce alpha diversity of in-
testinal microbiome in CIA mice and 
an enrichment of Nostocophycideae and 
Cyanobacteria and reduction of Clostri-
diaceae and Deltaproteobacteria has 
been demonstrated in faecal samples of 
RA patients treated with etanercept (82).
Finally, one of the most explored area 
of research in terms of reducing arthri-
tis disease activity through the modula-
tion of the microbiota is the use of fae-
cal microbiota transplanation (FMT). 
This technique has demonstrated clear 
efficacy for the treatment of Clostrid-
ium difficile infection (83), and some 
initial evidence suggests it may be an 
interesting approach for the treatment 
of RA (84).

Discussion
The intricate interplay between the in-
testinal microbiota and arthritis has 
been the focus of extensive research, 
yet the question of whether microbiota 
alterations are a cause or consequence 
of arthritis remains elusive. Observa-
tional studies have provided valuable 
insights into the association between 
dysbiosis and various forms of arthritis, 
but establishing causality is challenging 
due to inherent limitations and biases. 
Despite the temporal precedence of mi-
crobiota changes observed in preclini-
cal stages of RA, causality cannot be 
definitively inferred from these findings 
alone.
To ascertain causality, interventional 
randomised trials are essential, yet 
their implementation in this research 
area carries significant technical dif-
ficulties. Moreover, observational data 
are susceptible to numerous sources of 
potential bias, including environmental 
influences on microbiota composition 
(such as diet and physical activity), 
medication effects (e.g. immunosup-
pressors, antibiotics), and the use of di-
etary supplements. These confounders 
make it challenging to discern whether 
observed microbiota changes are some-

how causally linked to arthritis or spuri-
ous correlations.
The heterogeneity of results across in-
dependent studies further complicates 
the interpretation of observational data. 
Contrasting findings and inconsisten-
cies in bacterial species associated with 
arthritis underline the need for caution 
in drawing definitive conclusions from 
observational studies alone.
Pathogenic mechanisms linking dys-
biosis to arthritis development have 
been proposed, including compromised 
intestinal barrier function, microbiota-
derived metabolites and molecular 
mimicry. However, most of these data 
are derived from observational studies 
and experimental models, warranting 
cautious interpretation.
Efforts to modulate the microbiota for 
arthritis treatment or prevention have 
also shown initial promising results, 
yet challenges persist. Antibacterial 
drugs, dietary interventions, probiotics, 
and faecal microbiota transplantation 
have been explored, but their efficacy 
remains uncertain. Moreover, the con-
founding effects of pharmacotherapy 
further complicate the interpretation of 
microbiota-modulating interventions.
In conclusion, while the association 
between intestinal microbiota and ar-
thritis is increasingly recognised, es-
tablishing causality remains a chal-
lenge. Interventional trials and further 
research are needed to elucidate the 
complex mechanisms underlying this 
relationship and, eventually, to identify 
effective strategies for modulating the 
microbiota. Until then, a cautious in-
terpretation of observational data and a 
multidisciplinary approach integrating 
clinical, experimental, and translational 
research are essential in advancing our 
understanding.
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