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ABSTRACT 
Artificial intelligence (AI) has its roots 
in the history of philosophy and of ap-
plied mathematics of the 17th, 18th and 
19th centuries. Throughout the 20th cen-
tury, significant advancements in math-
ematics and computer science laid the 
groundwork for modern AI, culminat-
ing in the establishment of the field as a 
formal discipline during the Dartmouth 
Conference in 1956.
This pivotal event brought together 
leading researchers who envisioned 
creating machines capable of simu-
lating human intelligence, setting the 
stage for decades of research and in-
novation in the field. The development 
of early AI systems focused on problem-
solving and symbolic reasoning, lead-
ing to the creation of programmes that 
could play games like chess and solve 
mathematical equations, which show-
cased the potential of machines to per-
form tasks previously thought to require 
human intellect.
As these foundational systems evolved, 
researchers began to explore more com-
plex algorithms and learning models, 
paving the way for advancements in ma-
chine learning and neural networks that 
would eventually revolutionise AI ap-
plications across various fields among 
which medicine. The growth of big data 
and increased computational power fur-
ther accelerated these advancements, 
enabling machines to analyse vast 
amounts of health information and learn 
from patterns at unprecedented speeds.
The revolution of deep learning and 
soon after large language models has 
enabled machines to achieve remarka-
ble feats, such as image and speech rec-
ognition, natural language processing, 
and even creative tasks like art genera-
tion, pushing the boundaries of what 
was once thought possible. As organi-
sations grapple with these challenges, 

there is growing emphasis on develop-
ing frameworks that ensure responsible 
AI deployment while maximising its po-
tential benefits for human health.

Introduction: the long journey 
toward AI through applied 
mathematics
The attention to artificial intelligence 
(AI) has reached its peak in recent years, 
whether we are dealing with articles, the 
lay press or the man on the street. Doc-
tors are faced with the task of deciding 
where, when and how to employ AI and 
of understanding its risks, problems and 
possibilities.
Just fifty years ago, the idea that a com-
puter could learn and understand was 
still the stuff of science fiction. Today it 
is an integral part of our lives, helping 
us do everything from finding photos to 
driving cars. The explosion of AI in all 
areas of our lives, including medicine, 
is the culmination of a long journey of 
mathematical and philosophical think-
ing that laid the theoretical foundations, 
and of computer science that incorpo-
rated these advances.
Already in the 17th and 18th centuries, 
there were crucial philosophical devel-
opments that would later influence AI. 
René Descartes proposed that animals 
and the human body were essentially 
complex machines, laying the ground-
work for considering intelligence as 
potentially replicable through mechan-
ical means. Gottfried Wilhelm Leibniz 
envisioned a universal language of 
human thought that could be manipu-
lated logically, foreshadowing modern 
computational approaches to reasoning 
and natural language processing. Gali-
leo Galilei for his part declared the ex-
istence of a language of the universe, 
written in mathematical terms: 
“questo grandissimo libro che continu-
amente ci sta aperto innanzi a gli occhi 
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(io dico l’universo), non si può intend-
ere se prima non s’impara a intender 
la lingua, e conoscer i caratteri, ne’ 
quali è scritto. Egli è scritto in lingua 
matematica, e i caratteri son triangoli, 
cerchi, ed altre figure geometriche, sen-
za i quali mezi è impossibile a intend-
erne umanamente parola; senza questi 
è un aggirarsi vanamente per un oscuro 
labirinto” [this great book which ever 
lies open before our eyes (I mean the 
universe), cannot be understood unless 
we first learn to understand the language 
and recognise the characters in which it 
is written. It is is written in mathemati-
cal language and its characters are tri-
angles, circles and other geometrical 
figures, without whose help it is impos-
sible to comprehend a single word of it; 
without this, we wander in vain through 
a dark labyrinth] (1).
We must wait till the 19th century when 
mathematics formally enters medicine, 
and some outstanding pioneers, came 
onto the scene. The French military phy-
sician Pierre-Charles-Alexandre Louis 
with the discovery of the ‘numerical 
method’ in 1837 (2) contributed enor-
mously to the development of modern 
medical statistics. His research on chest 
diseases, typhoid and leeches, make him 
one of the greatest French clinicians of 
the 19th century.
Another legendary figure in the his-
tory of public health is Dr John Snow 
(1813-1858), considered to be one of 
the fathers of epidemiology, demon-
strated the mechanisms by which chol-
era spread thanks to the statistical map-
ping methods he invented (3).
At the same time, other non-medical sci-
entists were laying the foundations for 
the development of computer science. In 
1834 the Englishman Charles Babbage 
conceived of a general-purpose device 
that could be programmed with punch 
cards (4). His analytical machine was 
never built, but almost all modern com-
puters are based on its logical structure. 
The young 27-year-old mathematician 
Ada Lovelace described a sequence of 
operations to solve mathematical prob-
lems using Charles Babbage’s theoreti-
cal punch-card machine in 1842 (5). In 
the 1970s, the US Department of De-
fense paid tribute to her by naming a 
new software language ADA.

Just five years later, philosopher and 
mystic George Boole created a form 
of algebra in which all values can be 
reduced to ‘true’ or ‘false’. Essential 
to modern computing, Boolean logic 
helps a CPU decide how to process new 
input (6).
In the 1930s, inspired by how we fol-
low specific processes to perform tasks, 
English logician and cryptanalyst Alan 
Turing, one of the fathers of computer 
science and known for having decrypt-
ed the Enigma code used for communi-
cations in Nazi Germany during World 
War II, theorised how a machine could 
decipher and execute a series of instruc-
tions. His published proof is considered 
the basis of computer science (7).
In the long journey that has led up to 
the present scenario of artificial intel-
ligence we can recognise five periods, 
as described in Table I.

The first period: 
simulation of human brain
In a famous article written in 1943, War-
ren McCulloch, a neurophysiologist and 
mathematician, explained how human 
neurons might work (8). To illustrate 
the theory, he modelled a network with 
electrical circuits with the help of Wal-
ter Pitts. The goal of the network was 
to solve a problem that had been posed 
by John von Neumann and others: how 
could computers be made to communi-
cate with each other?
This early model showed that it was 
possible for two computers to commu-
nicate without any human interaction. 
This event is important because it paved 
the way for the development of machine 
learning. However, these early artificial 
neural networks were not capable of 
learning and the synaptic values of their 
connections had to be predetermined by 
the experimenter. McCulloch and Pitts’ 

neurons, simple as they are, represent 
the model on which almost all of today’s 
neural models are based.
In the 1950s, some visionary com-
puter scientists and mathematicians 
set themselves the goal with their first 
computers to simulate the functioning 
of the human brain. Among these, in 
1955, John McCarthy proposed and or-
ganised the first famous seminar which 
took place that summer at Dartmouth 
College in Hanover, New Hampshire:
“An attempt will be made to find how 
to make machines use language, form 
abstractions and concepts, solve kinds 
of problems now reserved for humans, 
and improve themselves. We think that a 
significant advance can be made in one 
or more of these problems if a carefully 
selected group of scientists work on it 
together for a summer.” The following 
year he created the term “artificial in-
telligence”.
This conference at Dartmouth Col-
lege was attended by researchers who 
were either already established (such as 
Claude Shannon, the ‘father’ of infor-
mation theory) or destined to become 
famous in their field of expertise (such 
as Marvin Minsky and John McCarthy).
Subsequent developments were prom-
ising, e.g. programmes were created 
that could prove certain mathematical 
theorems or play chess.
The reference language was LISP, 
which influenced numerous program-
ming languages over the decades.
In 1957, Frank Rosenblatt – affiliated 
with the Cornell Aeronautical Labora-
tory – created the perceptron by fus-
ing Donald Hebb’s algorithm on brain 
cell interaction with Arthur Samuel’s 
theories of machine learning (9). The 
perceptron was a real machine that had 
thousands of wires rather than software. 
Called the perceptron Mark 1, it was 

Table I. Development periods of artificial intelligence..

Period                     Phases                                                      Main focus

 1940-1970             Heroic attempts with early computers     Brain simulation

1970-1985              Expert systems                                         Medical problem solving

1986-2000             ANN and other MLS                                Diagnosis and prognosis prediction at 
                                                                                                individual level

2000-2012             Deep learning                                           Image recognition and understanding        

2012-now              Large language models                             Language recognition and understanding
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built for image recognition, anticipat-
ing what would, 40 years later, become 
the idea underlying the deep learning. 
It was the first neurocomputer, which 
unfortunately, due to a series of vicissi-
tudes, was never successful. Those who 
were responsible for this rejection were 
Marvin Minsky and Seymour Papert, 
both mathematicians. In their famous 
book published in 1969 (12), they un-
covered the intrinsic weaknesses of the 
perceptron which lacked the ability to 
handle non-linear relations and which 
therefore, in their opinion, could not be 
considered a model of the brain at all. 
However. they realised that building a 
multi-level perceptron network could 
solve more complex problems, but at 
the time, the increasing computational 
complexity required to train networks 
using algorithms had not yet found an 
infrastructural answer (there were no 
hardware systems capable of ‘support-
ing’ such operations).

The second period: 
expert systems
With the 1970s came expert systems, 
i.e. (intelligent) programmes capable 
of providing a solution to complex 
problems falling within a specific field 
or domain without the intervention of a 
‘human’ expert. 
But this decade only saw a first gen-
eration of expert systems, linked to 
Boolean logic and logical reasoning 
under conditions of certainty by means 
of a deterministic model, which would 
undergo developments in the following 
years with the acquisition of knowledge 
through the contributions of domain  
experts (10). These systems achieved a 
notable degree of success by enabling 
the encoding and preservation of human 
expert knowledge, thereby rendering it 
accessible to a diverse array of users. 
Towards the end of the 1970s, there 
was an exponential increase in the use 
of minicomputers which, being smaller 
and cheaper, were widely purchased, 
especially by companies. Consequent-
ly, the amount of documentation pro-
duced also began to grow, necessitating 
tools that could organise and consult it 
quickly.
It was in this climate that expert sys-
tems acquired a vital role, as they dif-

fered significantly from the procedural 
method of programming (which was 
widespread at the time) in their use of 
‘a natural application of the concept of 
symbolic systems’ (11).
Those of the 1980s are second-gener-
ation expert systems in that they intro-
duced the probabilistic model which, 
unlike the deterministic model, reasons 
on the causes and the possible effects. 
However, this model, like that of the 
1970s, also has limitations, such as the 
fact that the most probable answer may 
not always be the most useful one.
Following a period of optimism regard-
ing their potential during the 1980s, it 
became apparent that these systems 
possessed significant limitations, pri-
marily stemming from their inability to 
adequately consider the intricate, mul-
tifaceted, and often implicit contextual 
factors that are relevant to issues per-
taining to health and disease, which 
are predominantly resolved by human 
agents through the application of com-
mon sense, a fact that poses the great-
est challenge when pursued through the 
lens of inductive and deductive reason-
ing. It is not coincidental that the most 
compelling outcomes of expert sys-
tems within the medical domain were 
observed in applications that exhibited 
considerable requirements for pattern 
recognition, such as the formulation of 
diagnoses.
The culmination of these events led to 
a diminished set of expectations that 
manifested in the first winter of artifi-
cial intelligence.

The third period: 
artificial neural networks and 
other machine learning systems 
Subsequent significant breakthroughs 
in the ensuing years reignited inter-
est and fervour for neural networks. I 
am alluding to the formulation of the 
backpropagation algorithm by Rumel-
hart and Hinton (13). Backpropagation 
constitutes a computational procedure 
that facilitates the network’s capacity 
to learn from its errors by recalibrat-
ing its internal parameters to minimise 
inaccuracies, thereby enhancing the 
operational efficacy of artificial neural 
networks (ANNs). This signifies that 
the network progressively improves its 

aptitude for identifying patterns, gener-
ating predictions, and executing tasks 
as it continually engages with data. 
Hence, backpropagation can be regard-
ed as the fundamental mechanism that 
rendered contemporary AI practical. 
It was later acknowledged that, while 
neural networks could not accurately 
mimic the human brain, they possessed 
formidable capabilities in addressing 
intricate problems.
Towards the end of the 1980s there was 
an unequivocal demonstration of the 
ability of neural networks to interpolate 
any function problem given enough 
hidden units (14). Neural networks be-
came universal approximators. AI was 
experiencing its second boom. With ar-
tificial neural networks the assumptions 
of classical statistics were overturned.
If we could ask an artificial neural net-
work “which assumptions underly your 
reasoning?” we would probably receive 
this answer: the variables under study 
are all dependent; their relationships are 
almost always non-linear; data must be 
processed dynamically; learning arises 
from errors; the focus is on the subject 
and not the variables; apparent learning 
must be confirmed blindly. These state-
ments are clearly orthogonal to classi-
cal statistics assumptions.
The most powerful and well-established 
statistical methods were developed in 
the first half of the past century when 
the size and the quality coming from 
clinical observations was rather limited 
and certainly negligible in comparison 
with the big data explosion.
It is noteworthy that all these meth-
ods rely on the basic assumption that 
in order to apply statistical tests the 
variables must be independent of each 
other, normally distributed and, more 
importantly, having linear relationships 
between them. But how one can imag-
ine that the variables related to a single 
subject are independent? Also, the nor-
mal distribution and the linearity turned 
out to be more an exception rather than 
a rule. 
Complex chronic diseases have a het-
erogeneous origin where various mech-
anisms participate to a different extent 
in different patients. Consequently, 
techniques belonging to classical sta-
tistics, such as discriminant analysis, 
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which assume linear functions under-
lying key pathogenetic factors, normal 
or quasi normal values distribution, 
and reduce the contribution of outliers 
through average computation, might in-
correctly represent the complex dynam-
ics of socio-demographic, clinical, ge-
netic and environmental features which 
may interact with each other in these 
patients. Artificial neural networks on 
the contrary take advantage of modern 
mathematical theories inspired by life 
sciences and seem to be able to extract 
information from the data that are not 
considered useful for traditional ap-
proaches.
The progressive pervasive entrance of 
artificial neural networks and of the oth-
er machine learning systems in the med-
ical scenario can be explained by the 
growing awareness of their properties: 
the ability to adapt to complex problems 
through progressive approximations 
and to model building by the data them-
selves, to analyse data more and more in 
depth, allowing new discoveries.
Artificial neural networks are systems 
of interconnected mathematical equa-
tions based on a principle inspired by 
the highly interactive processes of the 
human brain, generally composed of 
three processing layers with a finite 
number of non-linear units (i.e. artificial 
neurons). Like the brain, neural net-
works can recognise patterns, use data 
and learn by examples, just as a doctor 
does in the initial phase of his work. 
ANNs gained popularity in problems 
where the relationships between the 
variables of interest are very complex 
(15-17). Based on a set of simple rules, 
the system attempts to learn using some 
of the data and apply its ‘knowledge’ 
to the rest of the available information. 
Their main feature is the ability to mod-
ify their internal structure in response to 
the data presented (18). Artificial neu-
ral networks (ANNs) are sophisticated 
systems comprised of interconnected 
mathematical formulations, drawing in-
spiration from the intricate and dynamic 
functionalities of the human brain. Typi-
cally, ANN architectures consist of three 
processing layers, each encompassing a 
finite number of non-linear units, com-
monly referred to as artificial neurons. 
Analogous to the cognitive processes 

of the brain, these neural networks pos-
sess the capacity to identify patterns, 
utilise data, and, most importantly, learn 
through experiential examples. 
In this framework, the initial layer and 
the terminal layer of the network are 
classified as the input and output layers, 
respectively; whereas, the intermediary 
layer, which accommodates a variable 
quantity of artificial neurons termed 
hidden units, is proficient in executing 
the computations related to the non-
linearity inherent in a specific problem.
The utilisation of ANNs has surged in 
domains where the interrelationships 
between the variables of interest exhibit 
significant complexity. By employing a 
set of fundamental principles, the sys-
tem endeavours to assimilate knowl-
edge from a subset of the data and 
subsequently apply its acquired ‘un-
derstanding’ to the remaining available 
information. A salient characteristic of 
these networks is their inherent abil-
ity to adapt their internal architecture 
in response to the data encountered. 
In contrast to conventional statistical 
methodologies employed in the field of 
epidemiology, these models exhibit the 
capability to concurrently analyse all 
signals and accommodate the non-lin-
ear interrelations between all variables 
under consideration (19).
There are many examples of predictive 
applications of ANNs in the medical 

field. Referring to the author’s expe-
rience, interesting results have been 
obtained in diseases such as dyspeptic 
syndrome (20), atrophic gastritis (21), 
venous thrombosis (22), gastro-oesoph-
ageal reflux syndrome (23), irritable 
bowel syndrome (24), Alzheimer’s dis-
ease (25) and mild cognitive impair-
ment (26), cardiovascular diseases (27), 
gastrointestinal bleeding (28), gastric 
cancer (29), hypercortisolism (30), an-
ticoagulant dose prediction (31), energy 
expenditure in children (32), Covid di-
agnosis (33), among others. 

The fourth period: 
deep learning
Around the turn of the new millennium, 
a significant paradigm shift emerged 
with the advent of deep learning (34). 
the feasibility of which has been facili-
tated by the proliferation of neuronal 
layers, systematically arranged in hi-
erarchical constructs organised into 
‘cascades’ that progressively enhance 
generalisation capacity. This collec-
tively endows these architectures with 
remarkably refined pattern recognition 
capabilities, as well as the neurons and 
their interconnections, thus creating 
opportunities that were previously be-
lieved to be implausible. The corpus of 
literature pertaining to deep learning has 
experienced an unprecedented surge in 
recent years. A notable and exhaustive 

Fig. 1. Schematic of shallow neural network and deep neural network handling 18 inputs and 2        
outputs.
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review was published in 2023 by Haug 
et al. (35).
Figure 1 shows the transition from shal-
low neural networks and deep learning. 
Deep learning models are distinguished 
by an extensive array of parameters, 
necessitating the acquisition of knowl-
edge from substantial datasets. Owing 
to the substantial number of parameters 
employed, these models facilitate the 
identification of intricate configura-
tions within the input data and the cor-
responding complex relationships with 
the output variables. Furthermore, they 
enable the utilisation of all forms of data 
in digital format as inputs to the system, 
encompassing images, signals, and tex-
tual data. An intriguing characteristic of 
these deep models is the potential for 
reusing the parameters from the initial 
layers, which serve to ‘transform’ the 
input variables by accentuating their sa-
lient features, even in contexts that dif-
fer from those utilised during the model 
training phase.
These models possess noteworthy char-
acteristics: specifically, they facilitate 
the mathematical transformation of 
input variables, thereby accentuating 
certain attributes and subsequently cor-
relating these attributes with the result-
ant outputs.
For example, when the input data con-
sists of the pixels from a digitised im-
age, these algorithms permit the extrac-
tion of intermediary representations, 
such as the delineation of edges or the 
textural features inherent to the image, 
which can later be utilised in the ulti-
mate prediction phase.
The augmented accessibility of digit-
ised data, coupled with the concomitant 
enhancement in computational capa-
bilities (which is further bolstered by 
processors engineered in the realm of 
digital gaming, such as Graphics Pro-
cessing Units, GPUs) and the progres-
sive refinement of deep learning meth-
odologies have culminated in a substan-
tial enhancement of the performance of 
machine learning systems, particularly 
within the domains of image and text 
analysis. In the clinical arena, this 
progression has engendered a marked 
proliferation of AI systems that, sub-
sequent to rigorous clinical trials, have 
attained the status of software medical 

devices, thereby receiving recognition 
from certification entities and approval 
by the Food and Drug Administration 
(FDA) or having been CE-marked. A 
recent update to the catalogue of FDA-
approved AI products indicates that the 
field of radiology is the most populous 
domain (679), closely followed by 
cardiology (90) and neurology (32). 
Therefore, the advancement of imaging 
technology epitomises the domain in 
which AI has now evolved into a practi-
cal reality. Within the realm of radiol-
ogy, it has become feasible to conduct 
clinical studies adhering to high quality 
standards, facilitated by both the avail-
ability of sophisticated algorithms and 
the quality and reproducibility of the 
underlying data.
Other significant advancements that 
have emerged alongside the evolution 
of deep learning encompass:
(a) the development of generative ad-
versarial networks, distinguished by 
the collaborative interplay between two 
distinct types of networks, one assigned 
the responsibility of identifying valid 
solutions, while the other is designated 
to enhance the former’s capacity for 
discrimination (36).
(b) the formulation of attention mecha-
nisms – integrated within transformer-
type neural networks – which are able 
to deploy a selective allocation of com-
putational resources, thereby enhancing 
the proficiency in learning contextual 
relationships (37).
(c) the introduction of Energy-based 
generative neural networks, a category 
of generative models designed to ac-
quire explicit probability distributions 
of data through the utilisation of ener-
gy-based frameworks (38).
On the one hand, strategies have been 
developed to implement so-called ‘gen-
erative’ learning models. These models 
have been widely used, for example, 
to increase the quality of images by 
providing both the input and output 
of the supervised learning model with 
the same examples. In other words, 
the model is able to reproduce the in-
put data. With a few tricks in terms of 
the underlying mathematical tools, the 
reproduction of the output data can be 
changed, providing a new ‘version’ of 
the input data, e.g. less noisy and, in 

the case of images, more defined. With 
further appropriate computational strat-
egies, it is then possible to use these 
models to generate new data, i.e. data 
that deviates more from the original 
data. Generative models can then be 
used to create so-called ‘synthetic data’, 
which are data with the same statistical 
characteristics as the original data, but 
which can have a larger numerosity and 
have far fewer personal and clinical 
data protection issues.
This technological revolution has sig-
nificantly transformed several aspects 
of our everyday life. In contemporary 
society, it has become exceedingly easy 
to peruse thousands of images on a mo-
bile device without needing to manu-
ally annotate each one with its content. 
An individual is even capable of rec-
ognising objects in images with which 
they have no prior familiarity, such as 
specific varieties of flora. The utilisa-
tion of voice recognition technology 
has become widespread.
Individuals are enabled to translate 
among more than one hundred languag-
es, whether through the input of text or 
by directing their camera towards writ-
ten words in an unfamiliar language.
Furthermore, advancements in deep 
learning have rendered novel applica-
tions feasible within the healthcare 
sector. A seminal article published by 
JAMA, recognised as one of the dec-
ade’s most impactful contributions, il-
lustrated the capability of ophthalmol-
ogist-equivalent identification of dia-
betic retinopathy through the analysis 
of retinal photographs (39). Research 
endeavours have also yielded signifi-
cant advancements in the screening of 
breast (40) and lung cancers (41), pa-
thology (42), identification of dermato-
logical conditions (43), and predictive 
analytics derived from electronic health 
record data (44), among a plethora of 
other domains.

The fifth period: 
large language models
The integration of methodologies em-
ployed in text analysis alongside gen-
erative models has facilitated the devel-
opment of computational systems adept 
at synthesising text based on specified 
input descriptions while concurrently 
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addressing user inquiries. Such meth-
odologies are distinguished by their 
models exhibiting exceedingly high 
complexity, often encompassing multi-
ples of billions of parameters, which are 
acquired from hundreds or thousands 
of terabytes of data. These systems are 
designated as Large Language Models 
(LLM), and their implementation signi-
fies one of the contemporary frontiers 
of artificial intelligence, thereby garner-
ing significant interest within the clini-
cal domain (45, 46).
The application of generative AI within 
clinical settings constitutes one of the 
cutting-edge topics of scholarly inquiry. 
Following the introduction of ChatGPT, 
there has been a remarkable increase in 
the volume of published literature, to-
gether with the emergence of various 
clinical studies that have explored its 
application for diverse purposes. For 
example, one investigation contrasted 
the responses provided to patients’ in-
quiries by an AI-driven system with 
those offered by clinical practitioners, 
revealing that the former were deemed 
not only accurate but also exhibited 
greater empathy compared to the latter.
The methodical application of genera-
tive models and LLM necessitates the 
utmost prudence, owing to several piv-
otal considerations that warrant meticu-
lous evaluation.
These considerations include: i) the 
challenges associated with providing 
assurances regarding the accuracy of 
the responses; ii) the substantial adverse 
ramifications stemming from diagnos-
tic and therapeutic inaccuracies; iii) the 
imperative to elucidate the rationale 
behind the provided responses; iv) the 
safeguarding of intellectual property 
rights; v) the complexities inherent in 
modifying clinical workflows, and final-
ly vi) the privacy and security concerns 
pertaining to patient information.
It is therefore unsurprising that in cer-
tain institutions, tools such as GPT are 
employed to facilitate functions that do 
not have a direct bearing on diagnostic 
or therapeutic decisions. For example, 
these tools may be utilised to synthe-
sise existing documents, to generate 
administrative paperwork, or to auto-
matically document and transcribe dia-
logues with patients.

A recent review has characterised the 
current landscape of evaluation efforts 
of the performance of LLMs in clini-
cal health care settings, including uni-
formity, thoroughness, and robustness, 
to guide their deployment and propose 
a framework for the testing and evalua-
tion of LLMs across health care applica-
tions (47).
The objective of this study was to sum-
marise existing evaluations of LLMs in 
health care in terms of 5 components: 
(i) evaluation of type of data, (ii) health 
care task, (iii) natural language process-
ing (NLP) and natural language under-
standing (NLU) tasks, (iv) dimension of 
evaluation, and (v) medical specialty. A 
systematic search of PubMed and Web 
of Science was performed for studies 
published between January 1, 2022, and 
February 19, 2024.
The results of this study pointed out 
several unexpected facts: only 5% of 
the studies used real patient data. Real 
patient care data encompasses the com-
plexities of clinical practice, providing 
a thorough evaluation of LLM perfor-
mance that mirrors real-world perfor-
mance; only 15.8% of studies evaluated 
bias. Accurate bias quantification is cru-
cial for policymaking and regulation. 
No platform exists for reporting LLM 
failure modes in health care. Reporting 
failure modes is essential for root cause 
analysis in health care settings. No con-
sensus exists as to which evaluation di-
mensions to examine for a given health 
care or NLP task. Standardisation ena-
bles objective comparison, leading to 
reliable conclusions.
This systematic review highlights the 
need for considerable caution in ap-
preciating the added value of studies on 
large language models.

Conclusions
As stated above, AI is a tool available 
to us, it is at our service to improve our 
lives and activities, not the other way 
around. But such a tool must give peo-
ple all the information they need so that 
they can make correct decisions and 
can trust the output provided. Decisions 
that must be made following the results 
of a black box (where it is unclear how 
the output was arrived at) need to be 
supported by verification and analysis. 
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