

Clinical practice guidelines for reporting nailfold videocapillaroscopy: a Delphi consensus on behalf of the Italian Society of Rheumatology study group on capillaroscopy

F. Ingegnoli^{1,2}, D. Pireddu^{1,2}, E. Platania³, R. De Angelis⁴, A. Alunno⁵, A. Ariani⁶, S. Barsotti⁷, V. Batani⁸, L. Belloli⁹, A. Bezzi¹⁰, S.L. Bosello¹¹, F. Cacciapaglia¹², S.L. Calvisi¹³, N. Carlo-Stella¹⁴, F. Carubbi⁵, I. Cavazzana¹⁵, V. Codullo¹⁶, M. Colaci¹⁷, M. Cornalba^{1,2}, G. Cuomo¹⁸, G. De Marchi¹⁹, A. Della Rossa²⁰, M. Di Battista²⁰, E. Di Ruscio⁵, P. Faggioli²¹, M. Favero²², R. Foti²³, F. Girelli²⁴, D. Giuggioli²⁵, S. Guiducci²⁶, E. Gotelli²⁷, V. Grosso²⁸, E. Hysa²⁷, A. Iuliano²⁹, F. Lalli³⁰, L. Leveghi³¹, E. Marasco³², G. Mennillo³³, G. Moroncini³⁴, G. Pellegrino^{35,36}, C. Perricone³⁰, C. Pizzorni²⁷, E. Praino³⁷, L. Quarta³⁸, V.L. Ramoni³⁹, L. Santo³⁷, C. Schenone⁴⁰, M. Sebastiani⁴¹, L. Serafino⁴², T. Serban⁴⁰, P. Stobbione⁴³, A. Sulli²⁷, S. Truglia³, V. Smith⁴⁴, M. Cutolo²⁷, V. Riccieri³
on behalf of the Study Group on Capillaroscopy and Microcirculation in Rheumatic Diseases of the Italian Society of Rheumatology (CAPSIR)

Abstract

Objective

In clinical practice, standardised reporting of nailfold videocapillaroscopy (NVC) findings is lacking, making the interpretation and comparison of results difficult. We aimed to achieve a national consensus on how to describe NVC findings in routine clinical practice.

Methods

A web-based Delphi consensus study was conducted among members of the Study Group on Capillaroscopy and Microcirculation in Rheumatic Diseases of the Italian Society of Rheumatology (CAPSIR). The study was based on items derived from a previous systematic review and international consensus by the EULAR Study Group on Microcirculation in Rheumatic Diseases (SG_MC/RD).

Results

A total of 40 items were proposed during the Delphi process, which was completed by 52 participants from different Italian regions. An agreement was reached on 23 items covering different aspects of the NVC examination: general aspects (2 items), description of the fingers examined (3 items), possible confounding factors (2 items), device description (2 items), image quality (1 item) and details of the NVC examination (13 items). Sixteen of these were considered mandatory for inclusion in the NVC practice report, and 7 were considered optional.

Conclusion

The proposed NVC checklist covers 23 relevant issues in clinical practice, including 16 mandatory items grouped into five categories. This national consensus will improve the reproducibility and generalisability of NVC reporting in daily clinical practice. Furthermore, the outcomes of this NVC consensus process will inform the next European web-based Delphi consensus study, to be conducted among the member countries of the EULAR SG_MC/RD.

Keyword

capillaroscopy, microcirculation, Raynaud's phenomenon, rheumatic diseases

Affiliations: see page 6.

Francesca Ingegnoli*, MD
Debora Pireddu*, MD
Elena Platania*, MD
Rossella De Angelis, MD
Alessia Alunno, MD, PhD
Alarico Ariani, MD
Simone Barsotti, MD
Veronica Batani*, MD
Laura Belloli, MD
Alessandra Bezzi*, MD
Silvia Laura Bosello, MD
Fabio Cacciapaglia, MD
Stefania Laura Calvisi, MD, PhD
Nicoletta Carlo-Stella, MD
Francesco Carubbi, MD
Ilaria Cavazzana*, MD
Veronica Codullo*, MD
Michele Colaci*, MD
Martina Cornalba, MD
Giovanna Cuomo, MD
Ginevra De Marchi*, MD
Alessandra Della Rossa*, MD
Marco Di Battista*, MD
Evy Di Ruscio, MD
Paola Faggioli, MD
Marta Favero, MD
Roberta Foti, MD
Francesco Girelli, MD
Dilia Giuggioli*, MD
Serena Guiducci*, MD
Emanuele Gotelli*, MD, PhD
Vittorio Grosso, MD
Elvis Hysa*, MD
Annamaria Iuliano*, MD
Francesca Lalli, MD
Lorenzo Leveghi, MD
Emiliano Marasco, MD
Gianna Mennillo*, MD
Gianluca Moroncini, MD
Greta Pellegrino, MD
Carlo Perricone*, MD
Carmen Pizzorni, MD, PhD
Emanuela Praino, MD
Laura Quarta, MD
Véronique Laure Ramoni, MD
Leonardo Santo, MD
Carlotta Schenone, MD
Marco Sebastiani, MD
Lucia Serafino, MD
Teodora Serban, MD
Paolo Stobbiene, MD
Alberto Sulli*, MD
Simona Truglia*, MD
Vanessa Smith*, MD, PhD
Maurizio Cutolo*§, MD
Valeria Riccieri*§, MD

*These authors share senior co-authorship.

Please address correspondence to:

Francesca Ingegnoli
Rheumatology Unit, Department of
Rheumatology and Medical Sciences,
ASST Pini-CTO, Department of Clinical
Sciences & Community Health,
Università degli Studi di Milano,
Piazza Cardinal Ferrari 1, 20122 Milano, Italy.
E-mail: francesca.ingegnoli@unimi.it

Received on July 16, 2025; accepted in revised
form on September 22, 2025.

© Copyright CLINICAL AND
EXPERIMENTAL RHEUMATOLOGY 2026.

Competing interests: none declared.

Introduction

Nailfold videocapillaroscopy (NVC) is an easy-to-use, safe and non-invasive technique that has become an integral part of the imaging armamentarium in rheumatology research and clinical practice over the years (1, 2). Nowadays, rheumatologists are familiar with NVC, and the level of knowledge and availability of NVC is higher than other techniques for assessing microvascular involvement in systemic autoimmune rheumatic diseases (3-5).

Moreover, the role of NVC in the differential diagnosis of Raynaud's phenomenon (RP), early diagnosis and monitoring of systemic sclerosis (SSc), as well as scleroderma spectrum disorders is well established (6). As evidence of this, abnormal capillaroscopic findings were formally included in the 2013 ACR-EULAR classification criteria for SSc (7).

In the last ten years, the EULAR Study Group on Microcirculation in Rheumatic Diseases (SG_MC/RD) has been active in standardising different phases of this technique, such as the nomenclature to be used in daily practice and research (8, 9), the items relevant for reporting in clinical research (10), and organizing several international face-to-face and online training courses.

Increased use in clinical practice has corresponded with major technical advances in image resolution and analysis. In addition, a patient infographic explaining the meaning and advantages of NVC has been developed in several languages, and it is available for free download from the ERN ReConnet (European Reference Network on Rare and Complex Connective Tissue and Musculoskeletal Diseases) website (11).

In Italy, the NVC training program is part of the curriculum for rheumatology trainees, and in 2020 the steering committee of the Italian Society of Rheumatology (SIR) approved the Study Group (SG) on Capillaroscopy and Microcirculation in Rheumatic Diseases (CAPSIR), which soon started its first project to obtain an overview of the use of NVC and identify potential unmet needs in Italian rheumatology centres (4).

Reporting methods were heterogene-

ous among different centres, with the majority (74.2%) producing medical reports combined with capillaroscopic images. NVC images were described using either free text (71%) or with a pre-printed multiple-choice format produced by each centre (29%), which did not frequently adhere to the EU-LAR validated nomenclature (4).

Despite all these advances, there was no unanimous way of reporting in Italian centres, even though complete and accurate reporting is essential for comparing results. Based on these findings, in November 2024, CAPSIR_SG members proposed a national Delphi consensus to develop an agreed NVC report.

Methods

Delphi process

The CAPSIR Steering Committee oversaw the management of the Delphi process. The study was exempt from Institutional Review Board (IRB) approval since there was no research involving patient samples or data.

The Delphi exercise was conducted online (Google Forms) from January to April 2025.

The national experts in the field of NVC were recruited among the members of the CAPSIR SG and invited to participate in this Delphi exercise. The experts were all members of the SIR. A total of 132 experts, included in the CAPSIR_SG mailing list, were invited by e-mail to participate in this Delphi exercise. At least three reminders were sent. Experts who did not complete the first round were not invited to any of the subsequent Delphi rounds.

For all Delphi rounds, a deadline for submitting responses was set and communicated in the invitation. During this period, automated reminders were sent to participants who had not yet provided their ratings for each Delphi statement. Importantly, a glossary summarising NVC terminology in line with the EULAR nomenclature (8) has been included to summarise NVC terminology and to ensure standardisation of the final results (Table I). It should also be noted that when limb capillary dilations are present in NVC analyses, operators have to use the appropriate software to properly evaluate the diameters.

Statistical analysis

The CAPSIR Steering Committee first reviewed the results of a systematic literature review (SLR) that had previously been conducted with the aim of identifying reporting items for NVC (10). In the previous SLR, references were retrieved using an initial search strategy in Medline via PubMed, Embase and Scopus (10). The objective of this strategy was to identify all studies in which NVC was performed on a population of adults and children with rheumatic musculoskeletal diseases (10). In this SLR (10), 319 studies were analysed, revealing three main topics: 1) patient preparation (21 items); 2) device technical description (6 items); and 3) examination details (19 items). The CAPSIR Steering Committee agreed on the three topic categories to be addressed: patient preparation, instrument description and capillaroscopic parameters. They also finalised the preliminary list of statements, comprising 11, 8 and 21 items respectively. In the first round, participants were asked to consider the items previously identified, to focus on new items that may have been omitted, and to clarify items that may be ambiguous. The second round was based on the results of the first round, and in the third-round, participants reviewed the responses to each item from the second round, including basic summary statistics for each question, and were asked to rate the items again. In each round, they were asked to rate the level of appropriateness of each item on a scale from 1 (extremely inappropriate) to 9 (extremely appropriate). To achieve agreement, the median of the responses for each item had to be ≥ 7 , and $1/3$ or fewer of the participants had to be in the range 1-3 (12). Items on which no agreement was reached were excluded. The CAPSIR Steering Committee evaluated the results and comments from all the Delphi rounds, amending the newly proposed statements as necessary.

Results

Delphi participants

Sixty-one experts responded to the invitation to participate, representing all Italian regions. There were more fe-

Table I. Glossary of NVC terminology (8, 9).

NVC parameters		
Terminology	Definition	
Density	The number of capillaries/mm of distal row	≥ 7 capillaries/mm: normal density <7 capillaries/mm: lowered density
Dimension	Diameter of the apical limb of the capillary	<20 μm : normal diameter ≥ 20 and ≤ 50 μm : dilated >50 μm : giant capillary
Morphology	1) Normal: hairpin-shaped capillary 2) Non-specific variations: tortuous capillary (the limb bends but does not cross), or crossing (the limbs cross once or twice) 3) Abnormal shapes: bushy (capillary with small buds instead of branches capillary) and/or ramified capillary (capillary with branched limb) and/or crossed with more than 3 twisted, neoangiogenesis	
Microhaemorrhages	Pericapillary microhaemorrhages	
Venous Plexus	Visibility of the subpapillary venous plexus	
Architecture	Architecture of the capillary network	

Table II. Expert panel demographics.

	Round 1	Round 3
Experts invited, No. ^a	132	52
Experts participated, No.	61	52
Gender (Female-Male)	39-22	33-19
Italian region represented		
- Northwest [*]	23 (37.7%)	20 (38.4%)
- Northeast ^o	8 (13.1%)	8 (15.4%)
- Centre ^s	14 (23%)	12 (23.1%)
- South and islands [^]	16 (26.2%)	12 (23.1%)
Specialty		
- Rheumatology	51 (83.6%)	44 (84.6%)
Primary practice setting		
- Public hospital	23 (37.7%)	20 (38.5%)
- University hospital	29 (47.6%)	25 (48.1%)
- IRCCS ^o	6 (9.8%)	5 (9.6%)
- Private practice	3 (4.9%)	2 (3.8%)
NVC experience of respondents		
- more than 10 years	40 (65.6%)	34 (65.4%)
- 5-10 years	15 (24.6%)	12 (23.1%)
- less than 5 years	6 (9.8%)	6 (11.5%)
- No experience	0	0

^a Experts who completed the survey in full in the previous round were invited to subsequent rounds.

^{*}Valle d'Aosta, Liguria, Lombardy, Piedmont.

^oTrentino-Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia-Romagna.

^sTuscany, Umbria, Marche, Lazio.

[^]Abruzzo, Molise, Campania, Apulia, Basilicata, Calabria, Sicily.

^oIRCCS: Institute of Hospitalisation and Scientific Care.

male (39, 64%) than male (22, 36%) panellists. Patient care settings were diverse, with 29 (47.6%) experts working in academic institutions and 23 (37.7%) in public hospitals. They were predominantly rheumatologists (51, 83.6%) who were familiar with NVC (65.6% reported using NVC in routine clinical practice for more than 10

years). In the second round, 52 of the 61 experts responded (response rate, 85.24%), and in the third round, all 52 participants responded (Table II).

Delphi results

The Delphi workflow is shown in Figure 1. After three rounds of voting, several items were rephrased, deleted

or merged. The process started with 40 items and resulted in a final list of 23. Based on participants' suggestions, items were grouped into five main categories (*i.e.*, general items, anatomical area, contextual factors, equipment, images and NVC parameters) rather than three (*i.e.*, patient preparation, device description and examination details). The results consisted of 16 mandatory (*i.e.*, essential to be reported in the NVC report) and 7 optional items (Fig. 2). The English and Italian versions of the final consensus report of the NVC are shown in Figure 2 and Supplementary Figure S1, respectively. In particular, in the first round, three items not explicitly related to NVC but to general good clinical practice were requested for inclusion in the reporting checklist: reason for request, indications for other tests and timing of NVC repetition (Table III).

Participants also agreed on the importance of clearly stating where NVC will be performed: on both hands, or which finger is excluded and why. Although some other aspects may be important to report in clinical research studies (10), there was no consensus on their relevance for inclusion in a medical report in routine practice (Supplementary Table S1).

Two contextual factors were considered important as potential confounders, namely the presence of nail polish (or artificial or gel nail polish) and the presence of periungual lesions for various reasons (finger trauma or nail biting, self-mutilation of cuticles, manicure, manual work or hobbies). Technical characteristics of the NVC instrument, such as model, brand and magnification, which may affect the accuracy of the NVC examination, have to be included in the report. As NVC is an imaging technique, it is important to report details of the image quality (*e.g.*, excellent, good, poor) and the possible reasons if the quality is not acceptable (fibrosis, local trauma, dirty, blurred, oedema).

Finally, capillary density, morphology and dimensions, all standardized NVC parameters useful in deriving the overall pattern, achieved the agreement reported in Table III. Participants also

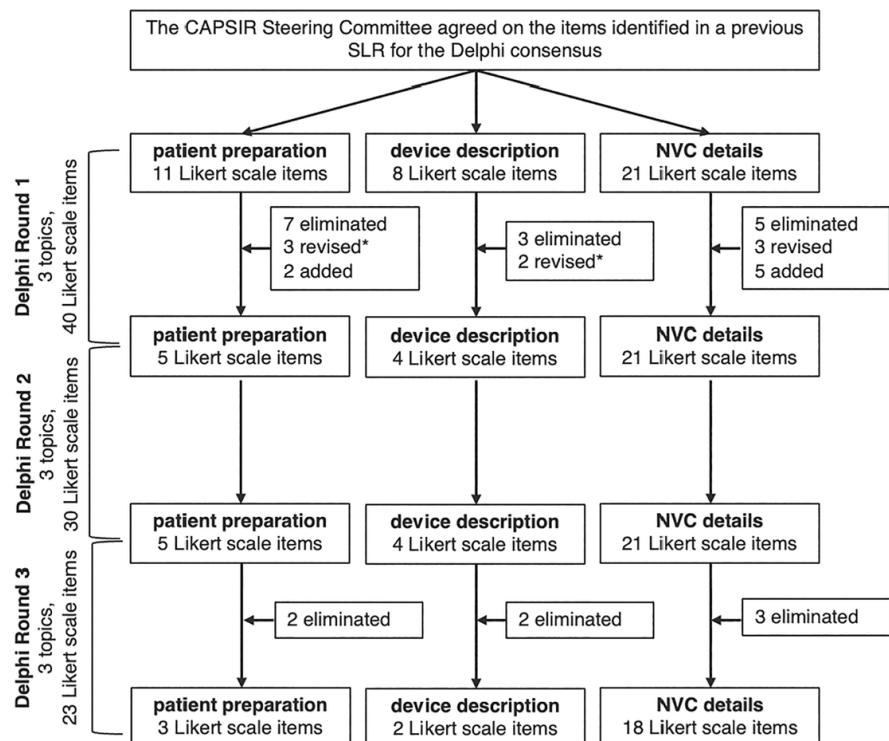


Fig. 1.

*Two items have been merged.

agreed to include three further optional items, such as: capillary bed architecture, blood flow characteristics and venular plexus visibility. Full agreement was reached to report the overall pattern according to the standardized EULAR nomenclature as the conclusion of the report (Table III).

Discussion

CAPSIR_SG participants have produced the first national checklist focusing on the reporting findings of NVC in daily clinical practice. The target audience of this project is all Italian healthcare professionals who perform and report NVC in rheumatic diseases. This simple and practical checklist will ensure transparent and comprehensive NVC reporting and it is an attempt to standardise and homogenise NVC reporting.

The overarching principles of NVC examinations, as validated by the EULAR nomenclature, were accepted *a priori*, such as the number and fingers to be examined. Ideally, all 8 fingers (excluding the thumbs) should be examined to capture the heterogeneity in appearance that is common between and within the nailfolds (6, 8, 13).

As this format is intended to be used in a real-world scenario, two general items were requested to be added to the checklist, such as the reason for the request and indications for other tests and the timing of the repeat NVC. The majority of CAPSIR_SG participants felt it was important to include these to emphasise the importance of NVC in the diagnosis and monitoring of scleroderma spectrum disorders.

In recent years, several NVC systems with different magnifications and performance have been introduced to the market (14-16). For this reason, the participants agreed to report device characteristics and magnification. By contrast, there was no consensus on items related to capillaroscopists' experience. This was primarily due to the lack of an agreed method for reporting and assessing such experience. However, the ongoing EULAR online courses on NVC and microcirculation will soon help participants report NVC findings correctly, culminating in a final examination to assess acquired competency. With clinicians concerned about increased administrative duties and cost-containment pressures, the importance of a time-

General items	Surname Name _____		Date _____							
	Reason for request _____									
Anatomical area	Right hand	2	3	4	5	Left hand	2	3	4	5
	Reason for finger exclusion _____				Yes		No			
	Nail polish or artificial or gel nails _____				Yes		No			
	Periungual lesions _____				Yes		No			
	Caused by	Finger trauma		Self-mutilation of cuticles						
		Nail biting		Manicure		Manual work or hobbies				
Equipment & images	Device model and brand _____									
	Magnification _____									
	Image quality	Excellent	Good	Poor						
	If poor, potential reason	Fibrosis	Oedema	Dirty	Local trauma		Other			
NVC parameters	No. of capillary/mm (median of both hands) _____									
	Capillary characteristics [§]									
	Hairpin shaped capillaries	Absent	Rare	Frequent	Very frequent					
	Non-specific variations	Absent	Rare	Frequent	Very frequent					
	Abnormal shaped capillaries	Absent	Rare	Frequent	Very frequent					
	Dilated capillaries	Absent	Rare	Frequent	Very frequent					
	Giant capillaries	Absent	Rare	Frequent	Very frequent					
	No. of giant capillaries	Absent	Rare	Frequent	Very frequent					
	Other parameters [§]									
	Microhaemorrhages	Absent	Rare	Frequent	Very frequent					
	Types of microhaemorrhages	Traumatic		Spontaneous						
	Blood flow characteristics*	Normal		Slowed						
	Venular plexus visibility*	Visible		Not visible						
	Nailfold architecture*	Normal		Distorted						
Final judgement	Overall pattern	Normal	Non-specific abnormalities							
		Scleroderma pattern - early	- active	- late						
		Scleroderma-like pattern								
	Indications for other tests _____									
	Repeat the capillaroscopy in _____									

Fig. 2. Summary of the items included in the checklist for reporting NVC in clinical practice.

[§]these parameters are classified according to a published scoring system (17) as absent: no changes (score=0); rare: less than 33% of capillary alterations/mm (score=1); frequent: 33–66% of capillary alterations /mm (score=2); very frequent: more than 66% of capillary alterations/mm (score=3).

*Optional items.

consuming reporting checklist cannot be overstated. Furthermore, according to Italian legal guidelines, any clinical report must be easily understandable for patients and general practitioners

alike. Against this background, it was considered more practical and feasible in the first round to categorise non-specific capillary variations, abnormally shaped capillaries, and dilated

capillaries as absent, rare (less than 33% capillary alterations per mm), frequent (between 33% and 66% of capillary alterations per mm) or very frequent (more than 66% capillary alterations per mm) (17), rather than counting the number per mm (8).

Only for giant capillaries was there agreement to report both measures. For a capillary to be defined as ‘giant’, its apical diameter must exceed 50 micrometres. By definition, giant capillaries are absent in the ‘late’ pattern; they are merely dilations of neoangiogenic loops. Other parameters measured per mm were eliminated in the first Delphi round.

Since what we see during NVC is the column of red blood cells within the capillary walls, contextual factors that may influence capillary visibility (and thus alter the final NVC report) were considered (10). However, only factors directly disturbing the observation of the periungual area, such as recent manicure (18) or traumatic lesions, reached the consensus. On the contrary, there was no consensus on other issues such as environmental conditions, pre-test acclimatisation, hydration (19), avoidance of caffeine and nicotine (20).

Although a description of peripheral blood flow intensity was introduced as an optional item in the second round, this is a difficult parameter to evaluate without a proper automated system. Furthermore, the examination is operator-dependent and susceptible to short-term variations. The final checklist consists of 23 items (16 mandatory and 7 optional) grouped into 5 categories to provide standardized information about the NVC examination.

One of the most important factors is still capillary diameter, as progressive dilation of over 30 microns is considered an early sign of capillary damage. Over time, this may evolve into giant capillaries measuring over 50 microns in a large percentage of patients with RP and antinuclear antibodies. The latter is essential for making a differential diagnosis of RP secondary to connective tissue diseases (21, 22).

This reporting format is easy to use, comprehensive and appropriate, and

Table III. The results of the Delphi process on items to be reported in the NVC clinical practice were grouped into five main report categories (see definitions in Table I).

Items	Level of appropriateness			Median	Agreement
	1-3	4-6	7-9		
General items					
Reason for NVC request	0	5 (9.6%)	47 (90.4%)	9	Yes
Indications for other tests or when to repeat NVC	0	2 (3.8%)	50 (96.2%)	9	Yes
Anatomical area					
Indicate if NVC is performed on both hands	2 (3.8%)	4 (7.7%)	46 (88.5%)	9	Yes
Number of fingers examined	3 (5.8%)	7 (13.5%)	42 (80.7%)	8	Yes
Reason for finger exclusion	2 (3.8%)	3 (5.8%)	47 (90.4%)	9	Yes
Contextual factors					
Remove nail polish or artificial or gel nails	5 (8.2%)	10 (16.4%)	46 (75.4%)	7	Yes
Indicate the presence of periungual lesions and their causes (e.g., finger trauma, nail biting, self-mutilation of cuticles, manicure, manual work or hobbies)	0	2 (3.8%)	50 (96.2%)	9	Yes
Equipment					
Device model, brand	11 (21.1%)	11 (21.1%)	30 (57.8%)	7	Yes
Magnification	4 (7.7%)	4 (7.7%)	44 (84.6%)	9	Yes
Images					
Image quality (excellent, good, poor) and, if poor, possible reasons (fibrosis, local trauma, dirty, blurred, oedema)	0	1 (1.9%)	51 (98.1%)	9	Yes
NVC parameters					
No. of capillary/mm (median of both hands)	6 (11.5%)	7 (13.5%)	39 (75%)	8	Yes
Hairpin-shaped capillaries [§] (absent, rare, frequent, very frequent)	3 (5.8%)	5 (9.6%)	44 (84.6%)	9	Yes
Non-specific variations [§] (absent, rare, frequent, very frequent)	4 (7.7%)	4 (7.7%)	44 (84.6%)	9	Yes
Abnormal shaped [§] (absent, rare, frequent, very frequent)	0	1 (1.9%)	51 (98.1%)	9	Yes
Dilated capillaries [§] (absent, rare, frequent, very frequent)	0	0	52 (100%)	9	Yes
No. of giant capillaries/mm	2 (3.8%)	2 (3.8%)	48 (92.4%)	9	Yes
Giant capillaries [§] (absent, rare, frequent, very frequent)	0	1 (1.9%)	51 (98.1%)	9	Yes
Microhaemorrhages [§] (absent, rare, frequent, very frequent)	0	1 (2%)	51 (98%)	9	Yes
Types of microhaemorrhages (traumatic, spontaneous)	2 (3.8%)	2 (3.8%)	48 (92.4%)	9	Yes
Nailfold architecture (normal, distorted)	0	1 (2%)	51 (98%)	9	Yes
Blood flow characteristics (normal, slowed)	2 (3.8%)	8 (15.4%)	42 (80.8%)	8	Yes
Venular plexus visibility (visible, not visible)	3 (5.8%)	9 (17.3%)	40 (76.9%)	8	Yes
Report the NVC pattern according to EULAR definitions (8)*	0	0	52 (100%)	9	Yes

[§]Using the Delphi method, participants voted on the appropriateness of reporting these parameters both per mm (according to the EULAR consensus) and as absent, rare, frequent, or very frequent (according to pragmatic daily practice). Only for giant capillaries was there agreement to report both measures. Other parameters were eliminated in the first round.

*To define a capillary dilation as 'giant' (i.e., greater than 50 micrometres in diameter), the diameter at the apex must be measured and reported. By definition, giant capillaries are absent in the 'late' pattern; they are simply dilated neoangiogenic loops.

we believe it will be widely adopted in Italy, thereby improving the interpretability and reproducibility of NVC reporting.

The results of this current national NVC consensus will form the basis of the next European web-based Delphi consensus, which will be launched among the member countries of the EULAR Study Group on Microcirculation in Rheumatic Diseases and will be available in several languages.

Affiliations

¹Clinica Reumatologica, Dipartimento di Reumatologia e Scienze Mediche, ASST Gaetano Pini-CTO, Milano;

²Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, Università degli Studi di Milano;

³Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome; ⁴Rheumatology Clinic, Polytechnic University of Marche,

Department of Clinical and Molecular Science, Jesi, Ancona; ⁵Department of Life, Health and Environmental Sciences, University of L'Aquila; Internal

Medicine and Nephrology Division, Avezzano-Sulmona-L'Aquila Local Health Authority 1, San Salvatore Hospital, L'Aquila; ⁶Department of Medicine, Internal Medicine and Rheumatology, Azienda Ospedaliera Universitaria di Parma; ⁷Ambulatorio di Reumatologia, Ospedale Versilia, ASL Toscana

Nord Ovest, Lido di Camaiore, Lucca; ⁸Unità di Immunologia, Reumatologia, Allergologia e Malattie Rare, IRCCS San Raffaele, Milano; ⁹Division of Rheumatology, Multispecialist Medical Department, ASST Grande Ospedale Metropolitano Niguarda, Milan; ¹⁰SS Reumatologia, Medicina Interna e Reumatologia, ASL Romagna, Ospedale Infermi, Rimini; ¹¹Rheumatology Division, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome; ¹²Rheumatology Unit, Department of Precision and Regenerative Medicine-Ionian Area, University of Bari Aldo Moro, Bari; Rheumatology Service, Internal Medicine Unit, F. Miulli General Hospital, Acquaviva delle Fonti, Department of Medicine and Surgery, LUM G. De Gennaro, Casamassima, Bari; ¹³Casa di Cura Beato Palazzolo, Bergamo; ¹⁴Istituto Clinico Beato Matteo, Vigevano; ¹⁵Rheumatology and Clinical Immunology, ASST Spedali Civili of Brescia; Department of Clinical and Experimental Sciences, University of Brescia; ¹⁶Department of Internal Medicine and Therapeutics, Università di Pavia; Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia; ¹⁷Department of Clinical and Experimental Medicine, University of Catania; ¹⁸Department of Precision Medicine, University of Campania, Luigi Vanvitelli University, Naples; ¹⁹Clinica di Reumatologia, Azienda Sanitaria Universitaria Friuli Centrale, Udine; ²⁰Department of Rheumatology, University of Pisa; ²¹UOC Reumatologia, ASST Ovest Milanese, Legnano, Milano; ²²Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso; ²³Division of Rheumatology, AOU Policlinico G. Rodolico San Marco, Catania; ²⁴UOS Reumatologia, Ospedale GB Morgagni-Pierantoni di Forlì; ²⁵Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia School of Medicine, Modena; ²⁶Department of Experimental and Clinical Medicine, University of Florence; Department of Internal Medicine, Division of Rheumatology AOUC, Florence; ²⁷Laboratory of Experimental Rheumatology and Academic Division

of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), IRCCS Ospedale Policlinico San Martino, University of Genova; ²⁸SS Reumatologia, UOC Medicina Interna, Ospedale Michele e Pietro Ferrero, ASL CN2, Verduno; ²⁹UOC Reumatologia, AO San Camillo-Forlanini, Roma; ³⁰Rheumatology, Department of Medicine and Surgery, University of Perugia; ³¹Rheumatology Unit, Hospital S. Chiara, Trento; ³²Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome; ³³Reumatologia, Ospedale San Carlo, Potenza; ³⁴Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona; ³⁵Department of Rheumatology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan; ³⁶Department of Scienze Biomediche e Cliniche, Università degli Studi di Milano; ³⁷U.O.S.V.D. Reumatologia e Rischio Oncologico, P.O. Mons. R. Dimiccoli Barletta, ASL BT Andria; ³⁸U.O. Reumatologia, Ospedale Antonio Galateo, San Cesario, Lecce; ³⁹UOC Medicina Interna Lodi, ASST di Lodi, Ospedale Maggiore di Lodi; ⁴⁰S.C. Reumatologia, Ospedale La Colletta, ASL3 Genovese, Arenzano; ⁴¹Rheumatology Unit, AUSL Piacenza; Department of Medicine and Surgery, University of Parma; ⁴²UOS Reumatologia, PO San Paolo, Bari; ⁴³SSD Reumatologia Azienda Sanitaria Ospedaliera S.S. Antonio e Biagio e C. Arrigo, Alessandria, Italy; ⁴⁴Department of Rheumatology and Department of Internal Medicine, Ghent University Hospital, University of Ghent, Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Centre, Ghent, Belgium.

Acknowledgements

*These authors are members of the European Reference Network (ERN) on Rare and Complex Connective Tissue Diseases (ReCONNNet).

We wish to thank the EULAR Study Group on Microcirculation in Rheumatic Diseases for continuous support. V. Smith is a Senior Clinical Investigator of the Research Foundation – Flanders (Belgium) (FWO) [grant numbers 1802920N and 1802925N].

References

- CUTOLO M, SMITH V: Detection of microvascular changes in systemic sclerosis and other rheumatic diseases. *Nat Rev Rheumatol* 2021; 17: 665-77. <https://doi.org/10.1038/s41584-021-00685-0>
- BURMESTER GR, BIJLSMA JWJ, CUTOLO M, MCINNES IB: Managing rheumatic and musculoskeletal diseases - past, present and future. *Nat Rev Rheumatol* 2017; 13: 443-8. <https://doi.org/10.1038/nrrheum.2017.95>
- INGEGLIOLI F, UGHI N, DINSDALE G et al.: An international SURvey on non-invasive techniques to assess the microcirculation in patients with Raynaud's phenomenon (SUNSHINE survey). *Rheumatol Int* 2017; 37: 1879-90. <https://doi.org/10.1007/s00296-017-3808-0>
- INGEGLIOLI F, CORNALBA M, DE ANGELIS R et al.: Nailfold capillaroscopy in the rheumatological current clinical practice in Italy: results of a national survey. *Reumatismo* 2022; 74(3). <https://doi.org/10.4081/reumatismo.2022.1508>
- GRACIA TELLO B, RAMOS IBANEZ E, FANLO MATEO P et al.: The challenge of comprehensive nailfold videocapillaroscopy practice: a further contribution. *Clin Exp Rheumatol* 2022; 40: 1926-32. <https://doi.org/10.55563/clinexprheumatol/6usce8>
- SMITH V, ICKINGER C, HYSA E et al.: Nailfold capillaroscopy. *Best Pract Res Clin Rheumatol* 2023; 37: 101849. <https://doi.org/10.1016/j.bepr.2023.101849>
- VAN DEN HOOGEN F, KHANNA D, FRANSEN J et al.: 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. *Arthritis Rheum* 2013; 65: 2737-47. <https://doi.org/10.1002/art.38098>
- SMITH V, HERRICK AL, INGEGLIOLI F et al.: Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud's phenomenon and systemic sclerosis. *Autoimmun Rev* 2020; 19: 102458. <https://doi.org/10.1016/j.autrev.2020.102458>
- CUTOLO M, MELSENS K, HERRICK AL et al.: Reliability of simple capillaroscopic definitions in describing capillary morphology in rheumatic diseases. *Rheumatology (Oxford)* 2018; 57: 757-9. <https://doi.org/10.1093/rheumatology/kex460>
- INGEGLIOLI F, HERRICK AL, SCHIOPPO T et al.: Reporting items for capillaroscopy in clinical research on musculoskeletal diseases: a systematic review and international Delphi consensus. *Rheumatology (Oxford)* 2021; 60: 1410-8. <https://doi.org/10.1093/rheumatology/keaa457>
- ERN RECONNET: Infographic on Videocapillaroscopy. 2024 [cited; <https://reconnet.ernnet.eu/2024/09/06/ern-reconnet-infographic-on-videocapillaroscopy/>].
- FITCH K, BERSTEIN S, AGUILAR M et al. (Eds): The RAND/UCLA Appropriateness Method User's Manual. RAND, 2001.
- DINSDALE G, ROBERTS C, MOORE T et al.: Nailfold capillaroscopy-how many fingers should be examined to detect abnormality? *Rheumatology (Oxford)* 2019; 58: 284-8. <https://doi.org/10.1093/rheumatology/keaa457>

doi.org/10.1093/rheumatology/key293

14. HERRICK AL, BERKS M, TAYLOR CJ: Quantitative nailfold capillaroscopy-update and possible next steps. *Rheumatology (Oxford)* 2021; 60: 2054-65. <https://doi.org/10.1093/rheumatology/keab006>

15. WILDT M, WUTTGE DM, HESSELSTRAND R, SCHEJA A: Assessment of capillary density in systemic sclerosis with three different capillaroscopic methods. *Clin Exp Rheumatol* 2012; 30 (Suppl. 71): S50-4.

16. BERKS M, DINSDALE G, MARJANOVIC E, MURRAY A, TAYLOR C, HERRICK AL: Comparison between low-cost USB nailfold capillaroscopy and videocapillaroscopy: a pilot study. *Rheumatology (Oxford)* 2021; 60: 3862-7. <https://doi.org/10.1093/rheumatology/keab006>

doi.org/10.1093/rheumatology/keaa723

17. SULLI A, SECCHI ME, PIZZORNI C, CUTOLO M: Scoring the nailfold microvascular changes during the capillaroscopic analysis in systemic sclerosis patients. *Ann Rheum Dis* 2008; 67: 885-7. <https://doi.org/10.1136/ard.2007.079756>

18. SHENAVANDEH S: Does the use of nail cosmetics interfere with the reporting of nailfold capillaroscopy? *Clin Rheumatol* 2023; 42: 1307-13. <https://doi.org/10.1007/s10067-023-06503-0>

19. SHEIKH ASF, WILKINSON J, MACIVER I et al.: The influence of hydration and heating on visualisation of nailfold capillaries in patients with systemic sclerosis. *Microvasc Res* 2021; 136: 104170. <https://doi.org/10.1007/s10067-023-06503-0>

https://doi.org/10.1016/j.mvr.2021.104170

20. KIM KM, LEE DJ, JOO NS: Reduction of the nailfold capillary blood velocity in cigarette smokers. *Korean J Fam Med* 2012; 33: 398-405. <https://doi.org/10.4082/kjfm.2012.33.6.398>

21. PACINI G, POGNA A, PENDOLINO M et al.: Understanding the value of non-specific abnormal capillary dilations in presence of Raynaud's phenomenon: a detailed capillaroscopic analysis. *RMD Open* 2022; 8. <https://doi.org/10.1136/rmdopen-2022-002449>

22. TROMBETTA AC, SMITH V, PIZZORNI C et al.: Quantitative Alterations of Capillary Diameter Have a Predictive Value for Development of the Capillaroscopic Systemic Sclerosis Pattern. *J Rheumatol* 2016; 43: 599-606. <https://doi.org/10.3899/jrheum.150900>