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Abstract
Objective
To develop and validate a machine-learning (ML) model that flags primary Sjogren’s disease (pSjD) patients at high
risk of depressive symptoms for earlier clinical attention.

Methods
We retrospectively studied 147 pSjD patients (Nanjing First Hospital, 2019-2022). Depressive symptoms were
screened with Patient Health Questionnaire-9 (PHQ-9); PHQ-9 =5 was the primary endpoint. Missing data were
handled by multiple imputation. Data were split 70/30 for training/testing. After univariate screening and LASSO
selection, eight ML algorithms (e.g. logistic regression, support vector machine (SVM), tree/boosting methods) were
trained with stratified 10-fold cross-validation. Performance was summarised by AUROC/AUPRC, accuracy,
precision/recall, Brier score, and calibration; SHAP provided model explainability.

Results
Four routinely available predictors were retained: fatigue frequency, sleep duration, lymphocyte count, and
anti-Ro52 status. Across repeated cross-validation, SVM showed the best overall discrimination (mean AUROC=0.90)
with strong precision and accuracy. In the held-out test set, SVM maintained high performance (AUROC=0.929;
AUPRC=0.959; Brier=0.106). SHAP confirmed predictor importance, indicating higher risk with shorter sleep,
lower lymphocyte counts, greater fatigue frequency, and anti-Ro52 positivity.

Conclusion
This study presents the first ML-based model for predicting depressive symptoms in pSjD patients, highlighting the
significance of immuno-inflammatory and clinical factors in depression pathogenesis. The SVM model offers a robust,
non-invasive tool for early identification of high-risk individuals, enabling timely and personalised interventions.
However, this single-centre, retrospective design with a modest sample limits generalisability; therefore, independent
multi-centre validation is required before clinical use.
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Introduction

Primary Sjogren’s disease (pSjD) is a
chronic autoimmune disorder that pri-
marily targets the salivary and lacrimal
glands, leading to marked ocular and
oral dryness (1, 2). Beyond glandular
dysfunction, patients frequently exhibit
extra-glandular manifestations, includ-
ing neuropsychiatric symptoms such as
depression (3). Estimates of the preva-
lence of depression in pSjD vary sig-
nificantly, ranging from 32% to 45.8%,
depending on the diagnostic methods
used (4). The COVID-19 pandemic has
significantly exacerbated the incidence
of depression (5), with a recent study
indicating that the rate among pSjD pa-
tients has escalated to 57.9% (6). Coex-
isting pSjD and depression complicates
diagnosis and treatment, undermines
quality of life and adherence, and un-
derscores the need for tools that iden-
tify high-risk patients early to enable
timely intervention.

The mechanisms linking pSjD and de-
pression are multifactorial. Proposed
drivers include brain parenchymal
changes, dysregulation of cytokine
networks, and heightened autoimmune
inflammation (4). Aberrant immunity
may sustain chronic inflammation and
perturb neurotransmission and neural
circuits implicated in mood regulation.
pSjD may also trigger stress responses
that contribute to hypothalamic-pitu-
itary-adrenal (HPA) axis dysfunction,
reinforcing depressive phenotypes (7).
Immune dysregulation in pSjD, marked
by polyclonal B cell activation and var-
ious autoantibodies, is also implicated
in the neurobiology of depression (8).
Several factors predispose pSjD pa-
tients to depression, including clini-
cal manifestations, dysfunction of the
cytokine regulatory network, and au-
toantibody production. A single-centre
cross-sectional study in China indicated
that disease activity and symptoms of
dry mouth and eyes are risk factors for
depression in pSjD patients (9). Recent
study has shown that IL-1f and its re-
lated molecules are associated with fa-
tigue in patients with pSjD, and these
cytokines may also contribute to depres-
sion (10). Our recent study identified
anti-Ro52 antibodies as risk factors and
sleep duration as a protective factor for

depression in pSjD patients (6). Nev-
ertheless, the heterogeneous, network-
level pathogenesis and the multitude of
candidate predictors make early, accu-
rate risk stratification challenging.
While questionnaire scales such as the
Patient Health Questionnaire-9 (PHQ-9)
are clinically useful, reliance on a single
subjective instrument limits predictive
accuracy for pSjD-related depression
amid complex biology and cofounders
(11). A more robust approach should
integrate clinical and laboratory data
to reduce bias and capture multidimen-
sional patterns associated with depres-
sive outcomes. Machine learning (ML)-
by leveraging larger feature spaces and
flexible algorithms-can detect nonlinear
associations and interactions that may
be overlooked by conventional methods
(12, 13). As a result, ML is increasingly
utilised in personalised and precision
medicine, especially in the develop-
ment of major disease risk prediction
models (14, 15). Notably, an eXtreme
Gradient Boosting (XGB) model accu-
rately predicted postpartum depression;
early interventions targeted to high-risk
individuals identified by the model re-
duced incident cases versus usual care,
demonstrating the clinical value of ML-
enabled screening and early action (16).
In this study, we aimed to develop an
accurate predictive model using ML
techniques to predict depressive symp-
toms related to pSjD. A wide range of
parameters considered relevant for the
onset of depression in pSjD patients, in-
cluding key demographic data, clinical
manifestations, levels of inflammatory
cytokines, and the presence of autoan-
tibodies, were incorporated into this
model. The successful establishment of
this model would enable the early iden-
tification and management of pSjD-as-
sociated depressive symptoms.

Materials and methods

Study design and population

This investigation is a single-centre
retrospective analysis intended as a
proof-of-concept, hypothesis-generat-
ing study. The data for this study were
provided by the Department of Rheu-
matology and Immunology at Nanjing
First Hospital, covering the period from
August 2019 to June 2022. The study
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was approved by the Ethics Committee
of Nanjing First Hospital (Reference:
KY20240603-KS-02), who waived the
informed consent requirement given
the retrospective design with pseu-
donymised data and minimal risk to
participants.

The criteria for patient eligibility in-
cluded: 1. being over 18 years old; 2.
adhering to the 2016 American College
of Rheumatology/European League
Against Rheumatism classification cri-
teria for pSjD (17); 3. filling out the
PHQ-9 questionnaire during the medi-
cal history collection on the first day of
admission. Additionally, patients with a
history of severe mental illness, malig-
nant tumours, those who had used drugs
to treat mental disorders, and pregnant
or lactating women were excluded.
Given the modest sample size and geo-
graphic scope, all findings should be
interpreted as preliminary and subject
to confirmation in independent, multi-
centre cohorts.

Assessment of depression

The PHQ-9, a nine-item instrument for
primary and general healthcare settings
(16, 18, 19), was administered at day-1
initial assessment to standardise tim-
ing and mirror real-world triage. Con-
sistent with its screening purpose, we
prespecified screen-positive depressive
symptoms as PHQ-9 =5, aligned with
the original severity bands (5/10/15/20
denoting mild/moderate/moderately se-
vere/severe symptom burden (18-20).

Covariates

We evaluated: 1. demographics (age,
sex, marital status, education); 2. medi-
cal history (overlap CTDs; thyroid dis-
ease, diabetes, other chronic conditions;
fibromyalgia); 3. haematology (WBC,
haemoglobin, platelets, neutrophils,
lymphocytes); 4. inflammatory mark-
ers (IL-2, IL-4, IL-6, IL-10, TNF-a,
ESR, CRP); 5. autoantibodies (anti-
Ro52,aPL, Rib-P, SSA, SSB, RNP/Sm,
CENP-B); and 6. medications [cor-
ticosteroids  (prednisone-equivalent),
immunosuppressants (e.g. cyclophos-
phamide, mycophenolate mofetil, cy-
closporine A, tacrolimus, azathioprine),
and csDMARD:s (e.g. methotrexate, hy-
droxychloroquine, iguratimod).
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Data structuralising and
pre-processing

The model for detecting depression was
set up and validated through a division
of the cohort data into training and test-
ing samples, in a 7:3 random split. Ex-
cept for the heavily missing variables
that were deleted, other missing val-
ues within the data were imputed with
Multiple Imputation by Chained Equa-
tions (MICE) (21, 22). We summarised
variable-wise missingness and patterns
(Supplementary Table S1, Supplemen-
tary Fig. S1); overall 5.82%; higher
for T-SPOT 48.3%, cytokines ~32%,
IFN-y 31.3%,1IL-6 29.3%; core clinical
<1%. We imputed using MICE (m=5-
10; PMM for continuous; logistic/mul-
tinomial for categorical) and pooled
estimates via Rubin’s rules.

The development and validation of the
depression detection model proceeded
through multiple phases. Initially, a
univariate analysis was performed on
the training set to identify variables that
showed significant differences between
patients with and without depressive
symptoms, facilitating initial feature
selection. Then, the training and test-
ing sets were separately standardised
to avoid poor model performance due
to uneven data distribution. Lastly,
the LASSO technique was applied to
the initially selected variables for ML
modelling.

ML modelling

In this section, depression ML models
were developed with the Python Scikit-
learn package 1.2.2. The input features
used included those selected by LASSO.
Guided by the dataset’s characteristics,
we adopted a systematic, diversified
algorithm panel comprising Logistic
Regression (LR), Random Forest Clas-
sifier (RFC), Support Vector Machine
(SVM), K-Nearest Neighbors (KNN),
Multilayer Perceptron (MLP), and
three state-of-the-art gradient-boosting
methods: LightGBM, XGBoost, and
CatBoost. LR was included for its suita-
bility to small samples; RFC for model-
ling non-linear relationships; SVM for
robustness in high-dimensional spaces;
KNN as a simple, instance-based com-
parator; MLP as a representative neural
network; and LightGBM/XGBoost/

CatBoost as leading tree-boosting
frameworks. This breadth balances
methodological completeness with the
interpretability and robustness required
in clinical contexts. Given the modest
sample size, all models incorporated
appropriate regularisation and repeated
cross-validation to mitigate overfitting
and enhance the reliability and accuracy
of performance estimates.

The hyper-parameters for the ML mod-
els were optimised through 10-fold
cross-validation and grid search. After
determining the optimal hyper-para-
meters for each model, we proceeded to
train each model with these optimal set-
tings using randomly selected training
data. Subsequently, each model under-
went testing with the testing data.

To identify the optimal model, we as-
sessed and compared eight models
based on several metrics, including ac-
curacy, specificity, sensitivity, precision,
recall, area under the receiver operating
characteristic (AUROC), area under the
precision-recall curve (AUPRC), Brier
score, positive predictive value (PPV),
and negative predictive value (NPV).
To ensure robust model evaluation, this
study employed repeated ten-fold cross-
validation with 10 repetitions, yielding
100 performance estimates. All perfor-
mance metrics are reported as the mean
and its 95% confidence interval, calcu-
lated based on the t-distribution. This
approach enhances the reliability of the
performance evaluation by increasing
the number of resampling iterations and
provides a quantifiable measure of esti-
mation uncertainty.

Internal validation

and uncertainty quantification

Models were tuned using repeated strat-
ified 10-fold cross-validation. To assess
stability and quantify uncertainty, we
performed 1,000 patient-level, strati-
fied bootstrap resamples, re-fitting the
models within each resample to obtain
optimism-corrected estimates for AU-
ROC/AUPRC, Brier score, calibration
slope/intercept, accuracy, sensitivity/
specificity, PPV/NPV. We report 95%
confidence intervals using percentile
bootstrap. Because threshold-depend-
ent metrics are sensitive to base-rate
shifts, we emphasise discrimination
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Fig. 1. Flow chart of the study.

LR: logistic regression; SVM: support vector machine; MLP: multilayer perceptron; KNN: K-nearest neighbour; RFC: random forest classification; LGBM:

light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting.

and calibration as primary performance
summaries.

SHAP explanation

Many ML models are accurate yet
opaque (‘black boxes’), limiting adop-
tion in high-stakes settings such as
medical diagnosis. To enhance trans-
parency, we employed Shapley Addi-
tive exPlanations (SHAP), a widely
used post-hoc interpretability approach
(23). Grounded in game theory, SHAP
attributes each prediction to features via
Shapley values, quantifying their mar-
ginal contributions and directions (24).
In this study, SHAP v0.44.0 was used
to visualise global and instance-level
effects, thereby elucidating the model’s
decision process.

Other statistical methods

Apart from the Scikit-learn package,
we also utilised R software (v. 4.3.2).
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Shapiro-Wilk normality tests were con-
ducted for every continuous variable.
Continuous variables with a normal
distribution were reported as mean =+
standard deviation (SD) while continu-
ous variables with a skewed distribu-
tion were reported using the median
(interquartile range (IQR)). T-tests or
Mann-Whitney U-tests were employed
to assess the discrepancies between
two groups. Categorical variables were
reported in percentages and analysed
with the chi-square tests. Prior to mod-
elling, one-hot encoding was applied.
Any significance test was conducted
with a two-tailed, maintaining a signifi-
cance cut-off point at p<0.05.

Results

Baseline characteristics

Following the inclusion and exclusion
criteria, 147 patients with pSjD were
enrolled. The flow chart is displayed in

Figure 1 and the baseline demographic,
clinical and laboratory parameters is
shown in Table I and Supplementary
Table S2. The dataset was predomi-
nantly comprised of female patients,
accounting for 93.1% of the records,
while males made up 6.8%. In the train-
ing data, average ages between the
participants with depressive symptoms
(59.4+11 4 years) and those without de-
pressive symptoms (57.7£10.0 years)
showed no statistically significant dif-
ference. The two groups were compa-
rable in most disease-related features,
including EULAR Sjogren’s Syndrome
Disease Activity Index (ESSDAI) score
and the prevalence of extra-glandular
manifestations. However, patients with
depressive symptoms reported signifi-
cantly shorter sleep duration (median
5.0 vs. 6.0 hours, p=0.01) and a mark-
edly higher burden of fatigue (p<0.001).
Notably, 20.6% of the depression group

Clinical and Experimental Rheumatology 2025
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Table I. Comparison of baseline demographic, clinical and laboratory parameters between

patients with or without depressive symptoms in the training set.

experienced fatigue almost every day,
compared to none in the non-depres-
sion group. Serologically, patients with

No depression Depression p-value . o .
n=39 n=63 depressive symptoms exhibited a sig-
nificantly lower lymphocyte count (me-
Gender 0.154 dian 1.1 vs. 1.6 x10%L, p=0.002) and
Female 39 (100%) 58 (92.1%) trikinely hich itivit te f
Male 0 (0.0%) 5 (7.9%) a strikingly higher positivity rate for
Age (years) 577 (10.0) 594 (11.4) 0.437 anti-Ro52 antibody (76.2% vs. 38.5%,
Sleep time (hours) 6.0 [5.8;7.0] 5.0 [5.0:6.0] 0.01 p<0.001). This serological marker dem-
Fatigue <0.001 onstrated the most substantial difference
None 26 (66.7%) 5 (7.9%) b h h Other lab
Less than one week in 2 weeks 11 (28.2%) 22 (34.9%) etween the cohorts. Other laboratory
More than one week in 2 weeks 2 (5.1%) 23 (36.5%) parameters, including inflammatory
Almost every day 0 (0.0%) 13 (20.6%) markers (ESR, CRP), complement lev-
g?clzavsArsn om 136 (2.2) 1.08 (1.9) ?‘8(1)(3) els, and IgG were not significantly dif-
No v 3.(77%) 5 (7.9%) ' ferent. Treatment patterns at inclusion,
Yes 36 (92.3%) 58 (92.1%) including the use of glucocorticoids
Salivary gland biopsy 0.823 (prednisone equivalent), immunosup-
No 25 (64.1%) 39 (61.9%) Lo
Yes 14 (35.9%) 24 (38.1%) pressants, and csDMARDs, were simi
ESSDAI 40 [2.0;7.0] 40 [2.0;6.0] 0975 lar between the two groups.
Extra-glandular involvement
P‘;\llmonary 5 521% 45 714% 0329 Model performance
o . 0 E 0 . . .
Yes 7 (17.9%) 18 (28.6%) Following LASSO regression ?malyms
Musculoskeletal revealed that the model comprised the
No 32 (82.1%) 53 (84.1%) 0.785 following predictors: presence of anti-
RYesl 7 (17.9%) 10 (15.9%) Ro52 antibodies, sleep time, fatigue
ena;
No 36 (92.3%) 57 (90.5%) 1.000 frequency, ‘j‘“d lymPhOCyte count.
Yes 3 (7.7%) 6 (9.5%) All evaluation metrics specified in the
Haematological Methods section were computed to
No 33 (84.6%) 30 (79.4%) compare models, with the performance
Yes 6 (15.4%) 13 (20.6%) £ h del h .. d
WBC count (x10°L) 5.7 [4.7:6.7] 52 [4.1:6.7] 0.252 ot each model on the training and test-
Haemoglobin (g/L) 121 [110;134] 119 [108;124] 0.279 ing sets detailed in Table II and III. The
Platelet count (x10°/L) 201 [143;246] 175 [146;218] 0.495 SVM model was the most effective,
Neutrophil count (x10%L) 3.2 [2.3;4.6] 3.5([2.2;5.0] 0.885 .
Lymphocyte count (x10%/L) 1.6 [1.1;2.1] 1.1 [0.9;1.5] 0.002 W]th, a_n average AUROC of 0921, a
Anti-Ro52 <0.001 precision of 0.904, and an accuracy of
) 24 (61.5%) 15 (23.8%) 0.878. In the test set, the SVM model
- 15 (38.5%) 48 (76.2%) also performed well, achieving an AU-
Anti-SSA 0.829
o 19 (48.7%) 28 (44.4%) ROC of 0.907, AUPRC of 0.940, sen-
+) 20 (51.3%) 35 (55.6%) sitivity of 0.887, specificity of 0.774,
Anti-SSB: 0.202 PPV of 0.873, NPV of 0.834, accuracy
(()) 3‘5‘ E?;gg"; ‘1‘2 gg-g;"; of 0.843, precision of 0.873, recall of
+ .07 4% .
ESR (mm/h) 27.0 [15.0;53.0] 40.0 [17.5:74.5] 0.228 0.887, and a Brier score of 0.106. .
CRP (mg/L) 33 [2.0;74] 3.9 [2.3:10.4] 0.240 Bootstrap resampling produced wider
Complement C3 (g/L) 0.80 (0.19) 0.76 (0.21) 0.337 95% Cls for threshold-dependent met-
Complement C4 (g/L) 0.19 [0.15;0.22] 0.19 [0.15;0.24] 0.896 rics and overlapping intervals across
IgG (g/L) 13.1 [10.8;18.4] 14.6 [11.7;18.7] 0.430 11 fecti ted
Therapy at inclusion several learners, re ecting expecte
Prednisone equivalent (mg/day) 0.0 [0.0;7.5] 5.0 [0.0;10.0] 0.171 variance in a modest sample. The
Immunosuppressants 0.273 parsimonious four-predictor logistic
W 32 2327(37? ” gfggg; model showed AUROC 0.909 (95% CI
€s 70 D70
Conventional anti-rheumatic drugs 0.829 0.817-0.978), compa.rable to SVM and
No 12 (30.8%) 22 (34.9%) tree-based models, with favourable cal-
Yes 27 (69.2%) 41 (65.1%) ibration; we therefore present it as the

primary reference, retaining other mod-

Immunosuppressants included cyclophosphamide, mycophenolate mofetil, cyclosporine A, tacroli-
mus, and azathioprine; conventional synthetic disease-modifying antirheumatic drugs (csDMARDs)
included methotrexate, hydroxychloroquine, and iguratimod.

VAS: visual analogue scale; ESSDAIL: EULAR Sjogren’s Syndrome Disease Activity Index; WBC:
white blood cell count; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; IgG: immuno-
globulin G.

els as benchmarks. Missingness and
patterns are detailed in Supplementary
Table S1 and Supplementary Figure S1.
The ROC and PRC for the models in
the test set are depicted in Figure 2. To
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Table II. Predictive performance of machine learning models based on the repeated cross-validation in training set.

AUROC AUPRC Sensitivity Specificity PPV NPV Accuracy Precision Recall

(95%CI) (95%CI) (95%CTI) (95%CI) (95%CI) (95%CT) (95%CTI) (95%CT) (95%CI)

LR 0913 0.944 0.907 0.720 0.851 0.708 0.835 0.851 0.907
(0.895-0.932)  (0.929-0.958) (0.886-0.929) (0.676-0.764) (0.829-0.873) (0.689-0.728) (0.814-0.856) (0.829-0.873) (0.886-0.929)

RFC 0.887 0.944 0.892 0.640 0.848 0.692 0.823 0.848 0.892
(0.867-0.907)  (0.929-0.958) (0.869-0.914) (0.607-0.672) (0.824-0.872) (0.671-0.713) (0.800-0.845) (0.824-0.872) (0869-0.914)

SVM 0.907 0.940 0.887 0.774 0.873 0.834 0.843 0.873 0.887
(0.889-0.925) (0.926-0.954) (0.863-0.910) (0.737-0.812) (0.853-0.893) (0.802-0.867) (0.824-0.863) (0.853-0893) (0.863-0.910)

KNN 0.807 0.940 0.825 0.663 0.857 0.656 0.795 0.857 0.825
(0.781-0.838)  (0.926-0.954) (0.796-0.853) (0.635-0.692) (0.834-0.880) (0.635-0.676) (0.774-0.817) (0.834-0.880) (0.796-0.853)

MLP 0.882 0.936 0.822 0.777 0.872 0.757 0.803 0.872 0.822
(0.863-0.901) (0.925-0.947) (0.793-0.851) (0.735-0.820) (0.848-0.895) (0.721-0.794) (0.781-0.825) (0.848-0.895) (0.793-0.851)

LGBM 0.880 0.922 0.925 0.528 0.778 0.672 0.779 0.778 0.925
(0.859-0.900)  (0.907-0.938) (0.905-0.946) (0.493-0.563) (0.756-0.801) (0.648-0.696) (0.755-0.802) (0.756-0.801) (0.905-0.946)

CATBoost 0.878 0.924 0.889 0.642 0.850 0.692 0.822 0.850 0.889
(0.857-0.899)  (0.909-0.939) (0.865-0.912) (0.610-0.674) (0.826-0.873) (0.670-0.713) (0.800-0.845) (0.826-0.873) (0.865-0.912)

XGBoost 0.861 0.926 0.920 0.610 0.830 0.703 0.824 0.830 0.920

(0.840-0.882)

(0.914-0.939) (0.900-0.941) (0.578-0.642) (0.807-0.852)

(0.682-0.725)

(0.801-0.846) (0.807-0.852) (0.900-0.941)

AUROC: area under the receiver operating characteristic; CI: confidence interval; AUPRC: area under the precision-recall curve; PPV: positive predictive
value; NPV: negative predictive value; LR: logistic regression; RFC: random forest classifier; SVM: support vector machine; KNN: K-nearest neighbour;
MLP: multilayer perceptron; LGBM: light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting.

Table III. Predictive performance of machine learning models based on the testing set.

AUROC AUPRC Sensitivity Specificity PPV NPV Accuracy Precision Recall
LR 0.882 0.937 0.750 0.882 0913 0.682 0.800 0913 0.750
RFC 0.922 0.960 0.821 0.941 0.958 0.762 0.867 0.958 0.821
SVM 0.929 0.959 0.786 0.882 0917 0.714 0.822 0917 0.786
KNN 0.803 0.865 0.679 0.765 0.826 0.591 0.711 0.826 0.679
MLP 0.897 0.943 0.643 1.000 1.000 0.630 0.778 1.000 0.643
LGBM 0916 0.954 0.857 0.882 0.923 0.789 0.867 0.923 0.857
CATBoost 0.935 0.969 0.714 1.000 1.000 0.680 0.822 1.000 0.714
XGBoost 0917 0.961 0.893 0.882 0.926 0.833 0.889 0.926 0.893

AUROC: area under the receiver operating characteristic; AUPRC: area under the precision-recall curve; PPV: positive predictive value; NPV: negative
predictive value; LR: logistic regression; RFC: random forest classifier; SVM: support vector machine; KNN: K-Nearest Neighbour; MLP: multilayer per-
ceptron; LGBM: light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting.

compare the predicted probabilities of
our model with the actual dataset la-
bels, a calibration plot was illustrated
in Figure 3, highlighting the Brier
score (lower is better).

Model explanation

ML methods excel at identifying com-
plex non-linear relationships among
variables. However, these models of-
ten lack transparency, which compli-
cates the interpretation of their predic-
tions (25). Consequently, we employed
SHapley Additive exPlanations (SHAP)
to dissect the top-performing ML mod-
els, particularly SVM. As illustrated in
Figure 4A, SHAP assigns an importance
value to each feature for every predic-
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tion. In predicting depressive symptoms
in patients with pSjD, fatigue frequency
is identified as the most critical predic-
tor, followed by lymphocyte count,
sleep duration, and anti-Ro52 antibod-
ies. The colours of the dots in Figure
4B represent the values of the variables,
clarifying how variable values affect
ML predictions. Dots on the left indi-
cate that the feature reduces the predict-
ed likelihood of depression, while dots
on the right suggest a positive impact.
Notably, a lower lymphocyte count and
shorter sleep duration (indicated by blue
dots) significantly increase the predicted
probability of depression. Conversely,
higher fatigue frequency and the pres-
ence of anti-Ro52 antibodies (indicated

by red dots) contribute to an increased
probability of depressive symptoms.

To further elucidate, Figure 5 includes
partial dependency plots that dem-
onstrate the relationship between the
values of each continuous variable and
their corresponding SHAP values. Fig-
ure 5 highlights a negative correlation
between the probability of developing
depressive symptoms and both sleep
duration and lymphocyte count. Con-
versely, a positive correlation with fa-
tigue frequency is evident. Moreover,
the figure shows that when sleep dura-
tion is less than five hours and lympho-
cyte count is below 1.4 x 10A%L, the
risk of depressive symptoms increases
significantly.
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Fig. 2. Receiver operating characteristic curves and precision-recall curve of the different models. (A) receiver operating characteristic curves of training
set, (B) receiver operating characteristic curves of testing set, (C) precision-recall curve of training set, (D) precision-recall curve of testing set.

AUROC: area under the receiver operating characteristic; AUPRC: area under the precision-recall Curve; LR: logistic regression; SVM: support vector
machine; MLP: multilayer perceptron; KNN: K-nearest neighbour; RFC: random forest classification; LGBM: light gradient boosting machine; CatBoost:
categorical boosting; XGBoost: extreme gradient boosting.

Discussion

To our knowledge, this is the first study
to apply ML to develop a predictive
model for pSjD-associated depressive
symptoms. Frequent fatigue, lower
lymphocyte count, shorter sleep du-
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ration, and anti-Ro52 positivity were
independently associated with higher
risk. The SVM achieved superior per-
formance (average AUROC 0.921, pre-
cision 0.904, accuracy 0.878), support-
ing its utility for early identification and

timely intervention in clinical practice.
Chronic fatigue, pain, and depression
commonly co-occur in pSjD and inter-
act to impair quality of life; whereas
pain is often framed as somatic, fatigue
and depression are typically viewed as
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Fig. 3. Calibration plot of machine learning models.

LR: logistic regression; SVM: support vector machine; MLP: multilayer perceptron; KNN: K-nearest
neighbour; RFC: random forest classification; LGBM: light gradient boosting machine; CatBoost: cat-
egorical boosting; XGBoost: extreme gradient boosting.
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B

psychological (26). Depression corre-
lates strongly with sleep disturbance
in pSjD, with poorer sleep and lower
quality of life linked to higher depres-
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sion, suggesting psychoneuroimmuno-
logical crosstalk (27). Poor sleep also
associates with greater fatigue; notably,
about one-third of patients report poor

sleep even without depression, indicat-
ing sleep-symptom effects independent
of mood (28). Proposed mechanisms
include hypothalamic-pituitary-adrenal
(HPA) axis dysregulation and immune
perturbation that contribute to fatigue
and sleep disruption in both pSjD and
depression (25, 29). Systemic inflam-
mation, reflected by elevated pro-in-
flammatory cytokines, may alter sleep
architecture and mood, creating a self-
reinforcing cycle (30); imbalances be-
tween pro- and anti-inflammatory cy-
tokines can impair neuronal function,
promoting pain, fatigue, and depres-
sive symptoms (31).

Lymphopenia in pSjD reflects height-
ened systemic inflammation rather than
immunosuppression. pSjD features B-
cell hyperactivation and autoantibody
production (e.g. anti-SSA/SSB), with
lymphocyte infiltration of exocrine and
extra-glandulartissues (32,33).Reduced
circulating lymphocytes, especially
CD4* T cells, may indicate exhaustion
or tissue-targeted trafficking and coin-
cide with increased IL-6, TNF-a, and
IFN-v (34). These cytokines can disrupt
blood-brain barrier integrity, access the
central nervous system, and impair neu-
roplasticity in mood-regulatory regions
(e.g. hippocampus, prefrontal cortex),
thereby linking immune activation, neu-
ral circuitry, and depressive symptoms
in pSjD (35).

Intriguingly, this study, characterised
by the application of ML techniques
for analysis, identified anti-Ro52 anti-
bodies as a risk factor for depression
accompanying pSjD. This result is
consistent with the findings of our prior
study, which employed traditional ana-
lytical methods (6). The anti-Ro52 an-
tibody, prevalent in various connective
tissue diseases (CTDs) and other auto-
immune disorders, has received signifi-
cant attention recently (36). It is well
recognized that anti-Ro52 is associated
with disease activity, leukopenia, and
interstitial lung disease (ILD) among
CTD patients (37). The link between
anti-Ro52 and depression in patients
with pSjD remains unclear. Animal
studies have shown Ro52 expression
in various regions of the mouse brain,
such as the hippocampus, cerebral cor-
tex, and cerebellum. Moreover, anti-
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Ro52 was detected in the cerebrospinal
fluid of an SS patient with symptoms
of cerebellar degeneration (38), sug-
gesting a potential role for anti-Ro52 in
cerebellar degeneration among SS pa-
tients, which may contribute to the on-
set of depressive symptoms. However,
the observed relationship between anti-
Ro052 and depressive symptoms should
be interpreted cautiously as an associa-
tion rather than causation. Temporality
cannot be established in this cross-sec-
tional design, and residual confounding
(e.g. overall disease activity, treatment
exposure, fatigue severity, sleep distur-
bance) may partially account for the
signal. Therefore, the role of anti-Ro52
in pSjD co-occurring with depressive
symptoms warrants further prospective
and longitudinal validation.

ML models are increasingly utilized
in medical diagnosis and prognosis
across diverse settings. This study em-
ployed eight analytical models: LR,
SVM, MLP, KNN, RFC, LGBM, Cat-
Boost, and XGBoost, with the SVM
model showing superior performance
by achieving optimal average AUROC,
precision, and accuracy. SVM relies
extensively on vector spaces, trans-
formations, and geometric concepts to
determine the optimal division in mul-
tidimensional space (39). This feature
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potentially makes it particularly well-
suited for complex medical data char-
acterised by high-dimensional features
(40). The efficacy of an SVM model in
accurately classifying patients hinges
on its ability to define a hyperplane
that optimally separates various classes
within the dataset. The bootstrap analy-
sis intentionally exposes variability and
optimism in small samples; consequent-
ly, intervals widen and apparent rank
differences attenuate. This transpar-
ency reduces the risk of over-claiming
performance and supports our decision
to prioritise a low-dimensional logistic
model with comparable discrimination
and better deployability. Internal resa-
mpling improves credibility but cannot
replace external validation, which re-
mains essential for transportability.

There are no documented models for
predicting depression in pSjD patients.
Currently, only one study analyses vari-
ables linked to patient disability using
logistic regression. The study found
that patient disability was associated
with depression, fatigue, and particu-
larly lack of stamina (41). Our study
also identified frequent fatigue and
short sleep duration as high-risk factors
for developing depressive symptoms.
Additionally, anti-Ro52 antibodies
and lymphocyte count were identified

as risk factors. Further prospective re-
search is required to confirm the thera-
peutic implications of these factors for
depression. Nevertheless, physicians
should carefully consider these ele-
ments when devising treatment regi-
mens for pSjD patients. With external
validation for clinical utility, this model
could serve as a potent tool for deliver-
ing personalised care and interventions
for patients with pSjD comorbid with
depressive symptoms.

Our study has important limitations.
This retrospective, single-centre study
with a modest, geographically con-
strained sample limits external validity
and transportability. Although we miti-
gated overfitting with a parsimonious
four-feature model, repeated stratified
cross-validation, and 1,000-bootstrap
optimism correction, these internal
checks do not replace external valida-
tion; the model is therefore hypothesis-
generating and requires evaluation in
larger, prospectively assembled multi-
centre cohorts before any clinical im-
plementation. The context of depres-
sion assessment also matters: PHQ-9
was used as a screen on hospital day-1
to reflect clinical triage, and scores can
be elevated by acute stressors, includ-
ing hospitalisation itself (42). Thus,
screen-positivity may reflect a mixture
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of major depression and situational dis-
tress, underscoring the role of PHQ-9
as an initial flag rather than a diagnos-
tic endpoint. Additionally, we did not
capture all potential predictors (e.g.
coping, social support, mental health
literacy), and information bias, espe-
cially recall bias in fatigue frequency
and sleep duration, with known gaps
between perceived and actual sleep,
may persist. Future studies should in-
corporate broader psychosocial meas-
ures, objective sleep metrics, and rig-
orous external validation.

In conclusion, this study used ML to
develop an accurate predictive model
for predicting the onset of depressive
symptoms in patients with pSjD, indi-
cating that factors like frequent fatigue,
lymphopenia, reduced sleep, and anti-
Ro052 antibodies increase the likelihood
of developing depressive symptoms in
pSjD patients. This ML model could
serve as a foundational tool for elu-
cidating the complex relationship be-
tween pSjD and depressive symptoms.
Insights from this model could poten-
tially improve prediction and treatment
strategies for pSjD patients, ultimately
enhancing their quality of life.
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