
Clinical and Experimental Rheumatology 2022Clinical and Experimental Rheumatology 2025; 43: 2161-2171.

An accurate predictive model for depressive symptoms in 
patients with primary Sjögren’s disease based on machine 

learning algorithms
L. Yang1, Y. Tong2,3, Y. Jin2,3, X. Wang1, Y. Yan2,3, W. Lu2,3, D. Su1, 

J. Zou3,4, K. Huang3,4

1Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, 
Nanjing; 2School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 
Nanjing; 3Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical 
University, Nanjing; 4Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical 

University, Nanjing, China.

Abstract
Objective

To develop and validate a machine-learning (ML) model that flags primary Sjögren’s disease (pSjD) patients at high 
risk of depressive symptoms for earlier clinical attention.

Methods
We retrospectively studied 147 pSjD patients (Nanjing First Hospital, 2019-2022). Depressive symptoms were 

screened with Patient Health Questionnaire-9 (PHQ-9); PHQ-9 ≥5 was the primary endpoint. Missing data were 
handled by multiple imputation. Data were split 70/30 for training/testing. After univariate screening and LASSO 

selection, eight ML algorithms (e.g. logistic regression, support vector machine (SVM), tree/boosting methods) were 
trained with stratified 10-fold cross-validation. Performance was summarised by AUROC/AUPRC, accuracy, 

precision/recall, Brier score, and calibration; SHAP provided model explainability.

Results
Four routinely available predictors were retained: fatigue frequency, sleep duration, lymphocyte count, and 

anti-Ro52 status. Across repeated cross-validation, SVM showed the best overall discrimination (mean AUROC≈0.90) 
with strong precision and accuracy. In the held-out test set, SVM maintained high performance (AUROC=0.929; 
AUPRC=0.959; Brier=0.106). SHAP confirmed predictor importance, indicating higher risk with shorter sleep, 

lower lymphocyte counts, greater fatigue frequency, and anti-Ro52 positivity.

Conclusion
This study presents the first ML-based model for predicting depressive symptoms in pSjD patients, highlighting the 

significance of immuno-inflammatory and clinical factors in depression pathogenesis. The SVM model offers a robust, 
non-invasive tool for early identification of high-risk individuals, enabling timely and personalised interventions. 

However, this single-centre, retrospective design with a modest sample limits generalisability; therefore, independent 
multi-centre validation is required before clinical use.
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Introduction
Primary Sjögren’s disease (pSjD) is a 
chronic autoimmune disorder that pri-
marily targets the salivary and lacrimal 
glands, leading to marked ocular and 
oral dryness (1, 2). Beyond glandular 
dysfunction, patients frequently exhibit 
extra-glandular manifestations, includ-
ing neuropsychiatric symptoms such as 
depression (3). Estimates of the preva-
lence of depression in pSjD vary sig-
nificantly, ranging from 32% to 45.8%, 
depending on the diagnostic methods 
used (4). The COVID-19 pandemic has 
significantly exacerbated the incidence 
of depression (5), with a recent study 
indicating that the rate among pSjD pa-
tients has escalated to 57.9% (6). Coex-
isting pSjD and depression complicates 
diagnosis and treatment, undermines 
quality of life and adherence, and un-
derscores the need for tools that iden-
tify high-risk patients early to enable 
timely intervention.
The mechanisms linking pSjD and de-
pression are multifactorial. Proposed 
drivers include brain parenchymal 
changes, dysregulation of cytokine 
networks, and heightened autoimmune 
inflammation (4). Aberrant immunity 
may sustain chronic inflammation and 
perturb neurotransmission and neural 
circuits implicated in mood regulation. 
pSjD may also trigger stress responses 
that contribute to hypothalamic-pitu-
itary-adrenal (HPA) axis dysfunction, 
reinforcing depressive phenotypes (7). 
Immune dysregulation in pSjD, marked 
by polyclonal B cell activation and var-
ious autoantibodies, is also implicated 
in the neurobiology of depression (8).
Several factors predispose pSjD pa-
tients to depression, including clini-
cal manifestations, dysfunction of the 
cytokine regulatory network, and au-
toantibody production. A single-centre 
cross-sectional study in China indicated 
that disease activity and symptoms of 
dry mouth and eyes are risk factors for 
depression in pSjD patients (9). Recent 
study has shown that IL-1β and its re-
lated molecules are associated with fa-
tigue in patients with pSjD, and these 
cytokines may also contribute to depres-
sion (10). Our recent study identified 
anti-Ro52 antibodies as risk factors and 
sleep duration as a protective factor for 

depression in pSjD patients (6). Nev-
ertheless, the heterogeneous, network-
level pathogenesis and the multitude of 
candidate predictors make early, accu-
rate risk stratification challenging.
While questionnaire scales such as the 
Patient Health Questionnaire-9 (PHQ-9) 
are clinically useful, reliance on a single 
subjective instrument limits predictive 
accuracy for pSjD-related depression 
amid complex biology and cofounders 
(11). A more robust approach should 
integrate clinical and laboratory data 
to reduce bias and capture multidimen-
sional patterns associated with depres-
sive outcomes. Machine learning (ML)-
by leveraging larger feature spaces and 
flexible algorithms-can detect nonlinear 
associations and interactions that may 
be overlooked by conventional methods 
(12, 13). As a result, ML is increasingly 
utilised in personalised and precision 
medicine, especially in the develop-
ment of major disease risk prediction 
models (14, 15). Notably, an eXtreme 
Gradient Boosting (XGB) model accu-
rately predicted postpartum depression; 
early interventions targeted to high-risk 
individuals identified by the model re-
duced incident cases versus usual care, 
demonstrating the clinical value of ML-
enabled screening and early action (16).
In this study, we aimed to develop an 
accurate predictive model using ML 
techniques to predict depressive symp-
toms related to pSjD. A wide range of 
parameters considered relevant for the 
onset of depression in pSjD patients, in-
cluding key demographic data, clinical 
manifestations, levels of inflammatory 
cytokines, and the presence of autoan-
tibodies, were incorporated into this 
model. The successful establishment of 
this model would enable the early iden-
tification and management of pSjD-as-
sociated depressive symptoms.

Materials and methods
Study design and population
This investigation is a single-centre 
retrospective analysis intended as a 
proof-of-concept, hypothesis-generat-
ing study. The data for this study were 
provided by the Department of Rheu-
matology and Immunology at Nanjing 
First Hospital, covering the period from 
August 2019 to June 2022. The study 
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was approved by the Ethics Committee 
of Nanjing First Hospital (Reference: 
KY20240603-KS-02), who waived the 
informed consent requirement given 
the retrospective design with pseu-
donymised data and minimal risk to 
participants.
The criteria for patient eligibility in-
cluded: 1. being over 18 years old; 2. 
adhering to the 2016 American College 
of Rheumatology/European League 
Against Rheumatism classification cri-
teria for pSjD (17); 3. filling out the 
PHQ-9 questionnaire during the medi-
cal history collection on the first day of 
admission. Additionally, patients with a 
history of severe mental illness, malig-
nant tumours, those who had used drugs 
to treat mental disorders, and pregnant 
or lactating women were excluded. 
Given the modest sample size and geo-
graphic scope, all findings should be 
interpreted as preliminary and subject 
to confirmation in independent, multi-
centre cohorts.

Assessment of depression
The PHQ-9, a nine-item instrument for 
primary and general healthcare settings 
(16, 18, 19), was administered at day-1 
initial assessment to standardise tim-
ing and mirror real-world triage. Con-
sistent with its screening purpose, we 
prespecified screen-positive depressive 
symptoms as PHQ-9 ≥5, aligned with 
the original severity bands (5/10/15/20 
denoting mild/moderate/moderately se-
vere/severe symptom burden (18-20). 

Covariates
We evaluated: 1. demographics (age, 
sex, marital status, education); 2. medi-
cal history (overlap CTDs; thyroid dis-
ease, diabetes, other chronic conditions; 
fibromyalgia); 3. haematology (WBC, 
haemoglobin, platelets, neutrophils, 
lymphocytes); 4. inflammatory mark-
ers (IL-2, IL-4, IL-6, IL-10, TNF-α, 
ESR, CRP); 5. autoantibodies (anti-
Ro52, aPL, Rib-P, SSA, SSB, RNP/Sm, 
CENP-B); and 6. medications [cor-
ticosteroids (prednisone-equivalent), 
immunosuppressants (e.g. cyclophos-
phamide, mycophenolate mofetil, cy-
closporine A, tacrolimus, azathioprine), 
and csDMARDs (e.g. methotrexate, hy-
droxychloroquine, iguratimod).

Data structuralising and 
pre-processing
The model for detecting depression was 
set up and validated through a division 
of the cohort data into training and test-
ing samples, in a 7:3 random split. Ex-
cept for the heavily missing variables 
that were deleted, other missing val-
ues within the data were imputed with 
Multiple Imputation by Chained Equa-
tions (MICE) (21, 22). We summarised 
variable-wise missingness and patterns 
(Supplementary Table S1, Supplemen-
tary Fig. S1); overall 5.82%; higher 
for T-SPOT 48.3%, cytokines ~32%, 
IFN-γ 31.3%, IL-6 29.3%; core clinical 
<1%. We imputed using MICE (m=5-
10; PMM for continuous; logistic/mul-
tinomial for categorical) and pooled 
estimates via Rubin’s rules.
The development and validation of the 
depression detection model proceeded 
through multiple phases. Initially, a 
univariate analysis was performed on 
the training set to identify variables that 
showed significant differences between 
patients with and without depressive 
symptoms, facilitating initial feature 
selection. Then, the training and test-
ing sets were separately standardised 
to avoid poor model performance due 
to uneven data distribution. Lastly, 
the LASSO technique was applied to 
the initially selected variables for ML 
modelling.

ML modelling
In this section, depression ML models 
were developed with the Python Scikit-
learn package 1.2.2. The input features 
used included those selected by LASSO. 
Guided by the dataset’s characteristics, 
we adopted a systematic, diversified 
algorithm panel comprising Logistic 
Regression (LR), Random Forest Clas-
sifier (RFC), Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), 
Multilayer Perceptron (MLP), and 
three state-of-the-art gradient-boosting 
methods: LightGBM, XGBoost, and 
CatBoost. LR was included for its suita-
bility to small samples; RFC for model-
ling non-linear relationships; SVM for 
robustness in high-dimensional spaces; 
KNN as a simple, instance-based com-
parator; MLP as a representative neural 
network; and LightGBM/XGBoost/

CatBoost as leading tree-boosting 
frameworks. This breadth balances 
methodological completeness with the 
interpretability and robustness required 
in clinical contexts. Given the modest 
sample size, all models incorporated 
appropriate regularisation and repeated 
cross-validation to mitigate overfitting 
and enhance the reliability and accuracy 
of performance estimates.
The hyper-parameters for the ML mod-
els were optimised through 10-fold 
cross-validation and grid search. After 
determining the optimal hyper-para-
meters for each model, we proceeded to 
train each model with these optimal set-
tings using randomly selected training 
data. Subsequently, each model under-
went testing with the testing data.
To identify the optimal model, we as-
sessed and compared eight models 
based on several metrics, including ac-
curacy, specificity, sensitivity, precision, 
recall, area under the receiver operating 
characteristic (AUROC), area under the 
precision-recall curve (AUPRC), Brier 
score, positive predictive value (PPV), 
and negative predictive value (NPV). 
To ensure robust model evaluation, this 
study employed repeated ten-fold cross-
validation with 10 repetitions, yielding 
100 performance estimates. All perfor-
mance metrics are reported as the mean 
and its 95% confidence interval, calcu-
lated based on the t-distribution. This 
approach enhances the reliability of the 
performance evaluation by increasing 
the number of resampling iterations and 
provides a quantifiable measure of esti-
mation uncertainty.

Internal validation 
and uncertainty quantification
Models were tuned using repeated strat-
ified 10-fold cross-validation. To assess 
stability and quantify uncertainty, we 
performed 1,000 patient-level, strati-
fied bootstrap resamples, re-fitting the 
models within each resample to obtain 
optimism-corrected estimates for AU-
ROC/AUPRC, Brier score, calibration 
slope/intercept, accuracy, sensitivity/
specificity, PPV/NPV. We report 95% 
confidence intervals using percentile 
bootstrap. Because threshold-depend-
ent metrics are sensitive to base-rate 
shifts, we emphasise discrimination 
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and calibration as primary performance 
summaries.

SHAP explanation
Many ML models are accurate yet 
opaque (‘black boxes’), limiting adop-
tion in high-stakes settings such as 
medical diagnosis. To enhance trans-
parency, we employed Shapley Addi-
tive exPlanations (SHAP), a widely 
used post-hoc interpretability approach 
(23). Grounded in game theory, SHAP 
attributes each prediction to features via 
Shapley values, quantifying their mar-
ginal contributions and directions (24). 
In this study, SHAP v0.44.0 was used 
to visualise global and instance-level 
effects, thereby elucidating the model’s 
decision process.

Other statistical methods
Apart from the Scikit-learn package, 
we also utilised R software (v. 4.3.2). 

Shapiro-Wilk normality tests were con-
ducted for every continuous variable. 
Continuous variables with a normal 
distribution were reported as mean ± 
standard deviation (SD) while continu-
ous variables with a skewed distribu-
tion were reported using the median 
(interquartile range (IQR)). T-tests or 
Mann-Whitney U-tests were employed 
to assess the discrepancies between 
two groups. Categorical variables were 
reported in percentages and analysed 
with the chi-square tests. Prior to mod-
elling, one-hot encoding was applied. 
Any significance test was conducted 
with a two-tailed, maintaining a signifi-
cance cut-off point at p<0.05.

Results
Baseline characteristics
Following the inclusion and exclusion 
criteria, 147 patients with pSjD were 
enrolled. The flow chart is displayed in 

Figure 1 and the baseline demographic, 
clinical and laboratory parameters is 
shown in Table I and Supplementary 
Table S2. The dataset was predomi-
nantly comprised of female patients, 
accounting for 93.1% of the records, 
while males made up 6.8%. In the train-
ing data, average ages between the 
participants with depressive symptoms 
(59.4±11.4 years) and those without de-
pressive symptoms (57.7±10.0 years) 
showed no statistically significant dif-
ference. The two groups were compa-
rable in most disease-related features, 
including EULAR Sjögren’s Syndrome 
Disease Activity Index (ESSDAI) score 
and the prevalence of extra-glandular 
manifestations. However, patients with 
depressive symptoms reported signifi-
cantly shorter sleep duration (median 
5.0 vs. 6.0 hours, p=0.01) and a mark-
edly higher burden of fatigue (p<0.001). 
Notably, 20.6% of the depression group 

Fig. 1. Flow chart of the study. 
LR: logistic regression; SVM: support vector machine; MLP: multilayer perceptron; KNN: K-nearest neighbour; RFC: random forest classification; LGBM: 
light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting.
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experienced fatigue almost every day, 
compared to none in the non-depres-
sion group. Serologically, patients with 
depressive symptoms exhibited a sig-
nificantly lower lymphocyte count (me-
dian 1.1 vs. 1.6 ×109/L, p=0.002) and 
a strikingly higher positivity rate for 
anti-Ro52 antibody (76.2% vs. 38.5%, 
p<0.001). This serological marker dem-
onstrated the most substantial difference 
between the cohorts. Other laboratory 
parameters, including inflammatory 
markers (ESR, CRP), complement lev-
els, and IgG were not significantly dif-
ferent. Treatment patterns at inclusion, 
including the use of glucocorticoids 
(prednisone equivalent), immunosup-
pressants, and csDMARDs, were simi-
lar between the two groups. 

Model performance
Following LASSO regression analysis 
revealed that the model comprised the 
following predictors: presence of anti-
Ro52 antibodies, sleep time, fatigue 
frequency, and lymphocyte count.
All evaluation metrics specified in the 
Methods section were computed to 
compare models, with the performance 
of each model on the training and test-
ing sets detailed in Table II and III. The 
SVM model was the most effective, 
with an average AUROC of 0.921, a 
precision of 0.904, and an accuracy of 
0.878. In the test set, the SVM model 
also performed well, achieving an AU-
ROC of 0.907, AUPRC of 0.940, sen-
sitivity of 0.887, specificity of 0.774, 
PPV of 0.873, NPV of 0.834, accuracy 
of 0.843, precision of 0.873, recall of 
0.887, and a Brier score of 0.106. 
Bootstrap resampling produced wider 
95% CIs for threshold-dependent met-
rics and overlapping intervals across 
several learners, reflecting expected 
variance in a modest sample. The 
parsimonious four-predictor logistic 
model showed AUROC 0.909 (95% CI 
0.817–0.978), comparable to SVM and 
tree-based models, with favourable cal-
ibration; we therefore present it as the 
primary reference, retaining other mod-
els as benchmarks. Missingness and 
patterns are detailed in Supplementary 
Table S1 and Supplementary Figure S1.
The ROC and PRC for the models in 
the test set are depicted in Figure 2. To 

Table I. Comparison of baseline demographic, clinical and laboratory parameters between 
patients with or without depressive symptoms in the training set.

	        No depression       	       Depression      	 p-value
	      n=39      	      n=63      	          

Gender	                 	                 	   0.154  
    Female	    39 	(100%)	    58 	(92.1%) 	          
    Male	    0 	(0.0%)	    5 	(7.9%) 	          
Age (years)	   57.7 	(10.0)   	   59.4 	(11.4)   	   0.437  
Sleep time (hours)	 6.0 	[5.8;7.0]	 5.0 	[5.0;6.0]	   0.01  
Fatigue	                 	                 	  <0.001  
    None	    26 	(66.7%) 	    5 	(7.9%)	          
    Less than one week in 2 weeks	    11 	(28.2%) 	    22 	(34.9%)	          
    More than one week in 2 weeks	    2 	(5.1%)	    23 	(36.5%)	          
    Almost every day	    0 	(0.0%)	    13 	(20.6%)	          
Pain VAS	   1.36 	(2.2)   	   1.08 	(1.9)   	   0.513  
Sicca symptom					     1.000
   No	 3	 (7.7%)	 5	 (7.9%)	
   Yes	 36	 (92.3%)	 58	 (92.1%)	
Salivary gland biopsy					     0.823
   No	 25	 (64.1%)	 39	 (61.9%)	
   Yes	 14	 (35.9%)	 24	 (38.1%)	
ESSDAI	 4.0	 [2.0;7.0]	 4.0	 [2.0;6.0]	 0.975
Extra-glandular involvement			 
Pulmonary	                 	                 	   0.329  
   No	    32 	(82.1%)	    45 	(71.4%)	          
   Yes	    7 	(17.9%)	    18 	(28.6%)	          
Musculoskeletal			 
   No	 32	 (82.1%)	 53	 (84.1%)	 0.785
   Yes	 7	 (17.9%)	 10	 (15.9%)	
Renal			 
   No	 36	 (92.3%)	 57	 (90.5%)	 1.000
   Yes	 3	 (7.7%)	 6	 (9.5%)	
Haematological			 
   No	 33	 (84.6%)	 50	 (79.4%)	
   Yes	 6	 (15.4%)	 13	 (20.6%)	
WBC count (×109/L)	 5.7 	[4.7;6.7]	 5.2 	[4.1;6.7]	   0.252  
Haemoglobin (g/L)	  121 	[110;134]  	  119 	[108;124]  	   0.279  
Platelet count (×109/L)	  201 	[143;246]  	  175 	[146;218]  	   0.495  
Neutrophil count (×109/L)	 3.2 	[2.3;4.6]	 3.5 	[2.2;5.0]	   0.885  
Lymphocyte count (×109/L)	 1.6 	[1.1;2.1]	 1.1 	[0.9;1.5]	   0.002  
Anti-Ro52	                 	                 	  <0.001  
   (-)	    24 	(61.5%)	    15 	(23.8%)	          
   (+)	    15 	(38.5%)	    48 	(76.2%)	          
Anti-SSA	                 	                 	   0.829  
   (-)	    19 	(48.7%)	    28 	(44.4%)	          
   (+)	    20 	(51.3%)	    35 	(55.6%)	          
Anti-SSB:	                 	                 	   0.202  
    (-)	    34 	(87.2%)	    47 	(74.6%)	          
   (+)	    5 	(12.8%)	    16 	(25.4%)	          
ESR (mm/h)	 27.0 	[15.0;53.0]	 40.0 	[17.5;74.5]	   0.228  
CRP (mg/L)	 3.3 	[2.0;7.4]	 3.9 	[2.3;10.4]	   0.240  
Complement C3 (g/L)	   0.80 	(0.19)   	   0.76 	(0.21)   	   0.337  
Complement C4 (g/L)	 0.19 	[0.15;0.22]	 0.19 	[0.15;0.24]	   0.896  
IgG (g/L)	 13.1 	[10.8;18.4]	 14.6 	[11.7;18.7]	   0.430  
Therapy at inclusion			 
    Prednisone equivalent (mg/day)	 0.0 	[0.0;7.5]	 5.0 	[0.0;10.0]	   0.171  
Immunosuppressants	                 	                 	   0.273  
    No	    36 	(92.3%)	    52 	(82.5%)	          
    Yes	    3 	(7.7%)	    11 	(17.5%)	          
Conventional anti-rheumatic drugs	                 	                 	   0.829  
    No	    12 	(30.8%)	    22 	(34.9%)	          
    Yes	    27 	(69.2%)	    41 	(65.1%)	          

Immunosuppressants included cyclophosphamide, mycophenolate mofetil, cyclosporine A, tacroli-
mus, and azathioprine; conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) 
included methotrexate, hydroxychloroquine, and iguratimod.
VAS: visual analogue scale; ESSDAI: EULAR Sjögren’s Syndrome Disease Activity Index; WBC: 
white blood cell count; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; IgG: immuno-
globulin G.
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compare the predicted probabilities of 
our model with the actual dataset la-
bels, a calibration plot was illustrated 
in Figure 3, highlighting the Brier 
score (lower is better).

Model explanation
ML methods excel at identifying com-
plex non-linear relationships among 
variables. However, these models of-
ten lack transparency, which compli-
cates the interpretation of their predic-
tions (25). Consequently, we employed 
SHapley Additive exPlanations (SHAP) 
to dissect the top-performing ML mod-
els, particularly SVM. As illustrated in 
Figure 4A, SHAP assigns an importance 
value to each feature for every predic-

tion. In predicting depressive symptoms 
in patients with pSjD, fatigue frequency 
is identified as the most critical predic-
tor, followed by lymphocyte count, 
sleep duration, and anti-Ro52 antibod-
ies. The colours of the dots in Figure 
4B represent the values of the variables, 
clarifying how variable values affect 
ML predictions. Dots on the left indi-
cate that the feature reduces the predict-
ed likelihood of depression, while dots 
on the right suggest a positive impact. 
Notably, a lower lymphocyte count and 
shorter sleep duration (indicated by blue 
dots) significantly increase the predicted 
probability of depression. Conversely, 
higher fatigue frequency and the pres-
ence of anti-Ro52 antibodies (indicated 

by red dots) contribute to an increased 
probability of depressive symptoms.
To further elucidate, Figure 5 includes 
partial dependency plots that dem-
onstrate the relationship between the 
values of each continuous variable and 
their corresponding SHAP values. Fig-
ure 5 highlights a negative correlation 
between the probability of developing 
depressive symptoms and both sleep 
duration and lymphocyte count. Con-
versely, a positive correlation with fa-
tigue frequency is evident. Moreover, 
the figure shows that when sleep dura-
tion is less than five hours and lympho-
cyte count is below 1.4 × 10^9/L, the 
risk of depressive symptoms increases 
significantly.

Table III. Predictive performance of machine learning models based on the testing set.

	 AUROC	 AUPRC	 Sensitivity	 Specificity	 PPV	 NPV	 Accuracy	 Precision	 Recall

LR	 0.882	 0.937	 0.750	 0.882	 0.913	 0.682	 0.800	 0.913	 0.750
RFC	 0.922	 0.960	 0.821	 0.941	 0.958	 0.762	 0.867	 0.958	 0.821
SVM	 0.929	 0.959	 0.786	 0.882	 0.917	 0.714	 0.822	 0.917	 0.786
KNN	 0.803	 0.865	 0.679	 0.765	 0.826	 0.591	 0.711	 0.826	 0.679
MLP	 0.897	 0.943	 0.643	 1.000	 1.000	 0.630	 0.778	 1.000	 0.643
LGBM	 0.916	 0.954	 0.857	 0.882	 0.923	 0.789	 0.867	 0.923	 0.857
CATBoost	 0.935	 0.969	 0.714	 1.000	 1.000	 0.680	 0.822	 1.000	 0.714
XGBoost	 0.917	 0.961	 0.893	 0.882	 0.926	 0.833	 0.889	 0.926	 0.893

AUROC: area under the receiver operating characteristic; AUPRC: area under the precision-recall curve; PPV: positive predictive value; NPV: negative 
predictive value; LR: logistic regression; RFC: random forest classifier; SVM: support vector machine; KNN: K-Nearest Neighbour; MLP: multilayer per-
ceptron; LGBM: light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting.

Table II. Predictive performance of machine learning models based on the repeated cross-validation in training set.

	 AUROC	 AUPRC	 Sensitivity	 Specificity	 PPV	 NPV	 Accuracy	 Precision	 Recall
	 (95%CI)	 (95%CI)	 (95%CI)	 (95%CI)	 (95%CI)	 (95%CI)	 (95%CI)	 (95%CI)	 (95%CI)

LR	 0.913	 0.944	 0.907	 0.720	 0.851	 0.708	 0.835	 0.851	 0.907
	 (0.895-0.932)	 (0.929-0.958)	 (0.886-0.929)	 (0.676-0.764)	 (0.829-0.873)	 (0.689-0.728)	 (0.814-0.856)	 (0.829-0.873)	 (0.886-0.929)

RFC	 0.887	 0.944	 0.892	 0.640	 0.848	 0.692	 0.823	 0.848	 0.892
	 (0.867-0.907)	 (0.929-0.958)	 (0.869-0.914)	 (0.607-0.672)	 (0.824-0.872)	 (0.671-0.713)	 (0.800-0.845)	 (0.824-0.872)	 (0869-0.914)

SVM	 0.907	 0.940	 0.887	 0.774	 0.873	 0.834	 0.843	 0.873	 0.887
	 (0.889-0.925)	 (0.926-0.954)	 (0.863-0.910)	 (0.737-0.812)	 (0.853-0.893)	 (0.802-0.867)	 (0.824-0.863)	 (0.853-0893)	 (0.863-0.910)

KNN	 0.807	 0.940	 0.825	 0.663	 0.857	 0.656	 0.795	 0.857	 0.825
	 (0.781-0.838)	 (0.926-0.954)	 (0.796-0.853)	 (0.635-0.692)	 (0.834-0.880)	 (0.635-0.676)	 (0.774-0.817)	 (0.834-0.880)	 (0.796-0.853)

MLP	 0.882	 0.936	 0.822	 0.777	 0.872	 0.757	 0.803	 0.872	 0.822
	 (0.863-0.901)	 (0.925-0.947)	 (0.793-0.851)	 (0.735-0.820)	 (0.848-0.895)	 (0.721-0.794)	 (0.781-0.825)	 (0.848-0.895)	 (0.793-0.851)

LGBM	 0.880	 0.922	 0.925	 0.528	 0.778	 0.672	 0.779	 0.778	 0.925
	 (0.859-0.900)	 (0.907-0.938)	 (0.905-0.946)	 (0.493-0.563)	 (0.756-0.801)	 (0.648-0.696)	 (0.755-0.802)	 (0.756-0.801)	 (0.905-0.946)

CATBoost	 0.878	 0.924	 0.889	 0.642	 0.850	 0.692	 0.822	 0.850	 0.889
	 (0.857-0.899)	 (0.909-0.939)	 (0.865-0.912)	 (0.610-0.674)	 (0.826-0.873)	 (0.670-0.713)	 (0.800-0.845)	 (0.826-0.873)	 (0.865-0.912)

XGBoost	 0.861	 0.926	 0.920	 0.610	 0.830	 0.703	 0.824	 0.830	 0.920
	 (0.840-0.882)	 (0.914-0.939)	 (0.900-0.941)	 (0.578-0.642)	 (0.807-0.852)	 (0.682-0.725)	 (0.801-0.846)	 (0.807-0.852)	 (0.900-0.941)

AUROC: area under the receiver operating characteristic; CI: confidence interval; AUPRC: area under the precision-recall curve; PPV: positive predictive 
value; NPV: negative predictive value; LR: logistic regression; RFC: random forest classifier; SVM: support vector machine; KNN: K-nearest neighbour; 
MLP: multilayer perceptron; LGBM: light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting.
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Discussion
To our knowledge, this is the first study 
to apply ML to develop a predictive 
model for pSjD-associated depressive 
symptoms. Frequent fatigue, lower 
lymphocyte count, shorter sleep du-

ration, and anti-Ro52 positivity were 
independently associated with higher 
risk. The SVM achieved superior per-
formance (average AUROC 0.921, pre-
cision 0.904, accuracy 0.878), support-
ing its utility for early identification and 

timely intervention in clinical practice.
Chronic fatigue, pain, and depression 
commonly co-occur in pSjD and inter-
act to impair quality of life; whereas 
pain is often framed as somatic, fatigue 
and depression are typically viewed as 

Fig. 2. Receiver operating characteristic curves and precision-recall curve of the different models. (A) receiver operating characteristic curves of training 
set, (B) receiver operating characteristic curves of testing set, (C) precision-recall curve of training set, (D) precision-recall curve of testing set. 
AUROC: area under the receiver operating characteristic; AUPRC: area under the precision-recall Curve; LR: logistic regression; SVM: support vector 
machine; MLP: multilayer perceptron; KNN: K-nearest neighbour; RFC: random forest classification; LGBM: light gradient boosting machine; CatBoost: 
categorical boosting; XGBoost: extreme gradient boosting.
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psychological (26). Depression corre-
lates strongly with sleep disturbance 
in pSjD, with poorer sleep and lower 
quality of life linked to higher depres-

sion, suggesting psychoneuroimmuno-
logical crosstalk (27). Poor sleep also 
associates with greater fatigue; notably, 
about one-third of patients report poor 

sleep even without depression, indicat-
ing sleep-symptom effects independent 
of mood (28). Proposed mechanisms 
include hypothalamic-pituitary-adrenal 
(HPA) axis dysregulation and immune 
perturbation that contribute to fatigue 
and sleep disruption in both pSjD and 
depression (25, 29). Systemic inflam-
mation, reflected by elevated pro-in-
flammatory cytokines, may alter sleep 
architecture and mood, creating a self-
reinforcing cycle (30); imbalances be-
tween pro- and anti-inflammatory cy-
tokines can impair neuronal function, 
promoting pain, fatigue, and depres-
sive symptoms (31).
Lymphopenia in pSjD reflects height-
ened systemic inflammation rather than 
immunosuppression. pSjD features B-
cell hyperactivation and autoantibody 
production (e.g. anti-SSA/SSB), with 
lymphocyte infiltration of exocrine and 
extra-glandular tissues (32, 33). Reduced 
circulating lymphocytes, especially 
CD4+ T cells, may indicate exhaustion 
or tissue-targeted trafficking and coin-
cide with increased IL-6, TNF-α, and 
IFN-γ (34). These cytokines can disrupt 
blood-brain barrier integrity, access the 
central nervous system, and impair neu-
roplasticity in mood-regulatory regions 
(e.g. hippocampus, prefrontal cortex), 
thereby linking immune activation, neu-
ral circuitry, and depressive symptoms 
in pSjD (35).
Intriguingly, this study, characterised 
by the application of ML techniques 
for analysis, identified anti-Ro52 anti-
bodies as a risk factor for depression 
accompanying pSjD. This result is 
consistent with the findings of our prior 
study, which employed traditional ana-
lytical methods (6). The anti-Ro52 an-
tibody, prevalent in various connective 
tissue diseases (CTDs) and other auto-
immune disorders, has received signifi-
cant attention recently (36). It is well 
recognized that anti-Ro52 is associated 
with disease activity, leukopenia, and 
interstitial lung disease (ILD) among 
CTD patients (37). The link between 
anti-Ro52 and depression in patients 
with pSjD remains unclear. Animal 
studies have shown Ro52 expression 
in various regions of the mouse brain, 
such as the hippocampus, cerebral cor-
tex, and cerebellum. Moreover, anti-

Fig. 3. Calibration plot of machine learning models.
LR: logistic regression; SVM: support vector machine; MLP: multilayer perceptron; KNN: K-nearest 
neighbour; RFC: random forest classification; LGBM: light gradient boosting machine; CatBoost: cat-
egorical boosting; XGBoost: extreme gradient boosting.

Fig. 4. SHAP plot for optimal SVM model.
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Ro52 was detected in the cerebrospinal 
fluid of an SS patient with symptoms 
of cerebellar degeneration (38), sug-
gesting a potential role for anti-Ro52 in 
cerebellar degeneration among SS pa-
tients, which may contribute to the on-
set of depressive symptoms. However, 
the observed relationship between anti-
Ro52 and depressive symptoms should 
be interpreted cautiously as an associa-
tion rather than causation. Temporality 
cannot be established in this cross-sec-
tional design, and residual confounding 
(e.g. overall disease activity, treatment 
exposure, fatigue severity, sleep distur-
bance) may partially account for the 
signal. Therefore, the role of anti-Ro52 
in pSjD co-occurring with depressive 
symptoms warrants further prospective 
and longitudinal validation.
ML models are increasingly utilized 
in medical diagnosis and prognosis 
across diverse settings. This study em-
ployed eight analytical models: LR, 
SVM, MLP, KNN, RFC, LGBM, Cat-
Boost, and XGBoost, with the SVM 
model showing superior performance 
by achieving optimal average AUROC, 
precision, and accuracy. SVM relies 
extensively on vector spaces, trans-
formations, and geometric concepts to 
determine the optimal division in mul-
tidimensional space (39). This feature 

potentially makes it particularly well-
suited for complex medical data char-
acterised by high-dimensional features 
(40). The efficacy of an SVM model in 
accurately classifying patients hinges 
on its ability to define a hyperplane 
that optimally separates various classes 
within the dataset. The bootstrap analy-
sis intentionally exposes variability and 
optimism in small samples; consequent-
ly, intervals widen and apparent rank 
differences attenuate. This transpar-
ency reduces the risk of over-claiming 
performance and supports our decision 
to prioritise a low-dimensional logistic 
model with comparable discrimination 
and better deployability. Internal resa-
mpling improves credibility but cannot 
replace external validation, which re-
mains essential for transportability. 
There are no documented models for 
predicting depression in pSjD patients. 
Currently, only one study analyses vari-
ables linked to patient disability using 
logistic regression. The study found 
that patient disability was associated 
with depression, fatigue, and particu-
larly lack of stamina (41). Our study 
also identified frequent fatigue and 
short sleep duration as high-risk factors 
for developing depressive symptoms. 
Additionally, anti-Ro52 antibodies 
and lymphocyte count were identified 

as risk factors. Further prospective re-
search is required to confirm the thera-
peutic implications of these factors for 
depression. Nevertheless, physicians 
should carefully consider these ele-
ments when devising treatment regi-
mens for pSjD patients. With external 
validation for clinical utility, this model 
could serve as a potent tool for deliver-
ing personalised care and interventions 
for patients with pSjD comorbid with 
depressive symptoms.
Our study has important limitations. 
This retrospective, single-centre study 
with a modest, geographically con-
strained sample limits external validity 
and transportability. Although we miti-
gated overfitting with a parsimonious 
four-feature model, repeated stratified 
cross-validation, and 1,000-bootstrap 
optimism correction, these internal 
checks do not replace external valida-
tion; the model is therefore hypothesis-
generating and requires evaluation in 
larger, prospectively assembled multi-
centre cohorts before any clinical im-
plementation. The context of depres-
sion assessment also matters: PHQ-9 
was used as a screen on hospital day-1 
to reflect clinical triage, and scores can 
be elevated by acute stressors, includ-
ing hospitalisation itself (42). Thus, 
screen-positivity may reflect a mixture 

Fig. 5. Features’ partial dependency plots.
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of major depression and situational dis-
tress, underscoring the role of PHQ-9 
as an initial flag rather than a diagnos-
tic endpoint. Additionally, we did not 
capture all potential predictors (e.g. 
coping, social support, mental health 
literacy), and information bias, espe-
cially recall bias in fatigue frequency 
and sleep duration, with known gaps 
between perceived and actual sleep, 
may persist. Future studies should in-
corporate broader psychosocial meas-
ures, objective sleep metrics, and rig-
orous external validation.
In conclusion, this study used ML to 
develop an accurate predictive model 
for predicting the onset of depressive 
symptoms in patients with pSjD, indi-
cating that factors like frequent fatigue, 
lymphopenia, reduced sleep, and anti-
Ro52 antibodies increase the likelihood 
of developing depressive symptoms in 
pSjD patients. This ML model could 
serve as a foundational tool for elu-
cidating the complex relationship be-
tween pSjD and depressive symptoms. 
Insights from this model could poten-
tially improve prediction and treatment 
strategies for pSjD patients, ultimately 
enhancing their quality of life.
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