

Visceral leishmaniasis infection in a rheumatoid arthritis patient treated with infliximab

S. Fabre, C. Gibert,
C. Lechiche, J. Dereure,
C. Jorgensen, J. Sany

Department of Immuno-Rheumatology,
CHU Lapeyronie, Montpellier, France.

Sylvie Fabre, MD, Christelle Gibert, MD,
Christian Jorgensen, MD, PhD, and
Jacques Sany, MD, Department of
Immuno-Rheumatology, CHU Montpellier;
Catherine Lechiche, MD, Department of
Infectious Disease, CHU Montpellier;
Jacques Dereure, MD, PhD, Department
of Parasitology and National Reference
Center for Leishmaniasis, CHU
Montpellier.

Please address correspondence to:
Prof. Jacques Sany, Department of
Immuno-Rheumatology, CHU Lapeyronie,
371 av Doyen Gaston Giraud, 34090
Montpellier, France.

E-mail: j-sany@chu-montpellier.fr

Please address reprint requests to:
Dr. Sylvie Fabre, Department of Immuno-
Rheumatology, CHU Lapeyronie, 371 av
Doyen Gaston Giraud, 34090 Montpellier,
France.

E-mail: s-fabre@chu-montpellier.fr

Received on January 14, 2005; accepted
in revised form on July 14, 2005.

© Copyright CLINICAL AND EXPERIMENTAL
RHEUMATOLOGY 2005.

Key words: Visceral leishmaniasis,
rheumatoid arthritis, infliximab,
TNF α antagonists.

ABSTRACT

Anti-TNF α strategies can result in significant clinical benefits in rheumatoid arthritis (RA), but with an increased rate of opportunistic infections. Visceral leishmaniasis (VL) is a severe disease that can develop in immunocompromised hosts, principally in HIV patients. VL in RA patients treated with TNF α antagonists is an extremely rare event, and only one case has been described. Here we report a case of VL, occurring after 9 infusions of infliximab in association with azathioprine, in a patient who developed blood cytopenia, fluctuant fever, and splenomegaly.

Introduction

Anti-TNF α strategies have had a marked impact in the treatment of RA, demonstrating efficacy in reducing disease activity and in retarding radiographic progression. In general, the benefit/risk ratio is quite favourable, however higher incidence of serious adverse events has been described. Infections, particularly tuberculosis and opportunistic infections, are among the most serious adverse events, especially given delays in diagnosis due to subtle or atypical presentation (1-3). Visceral leishmaniasis (VL) is a severe disease that can develop in immunocompromised hosts, principally in HIV patients (4). VL is an extremely rare event in RA patients treated with TNF α antagonists, and only one case has been described (5, 6). Here we report a case of VL, occurring after the 9th infusion of infliximab in association with azathioprine, in a patient who developed blood cytopenia, fluctuant fever, and splenomegaly

Case report

A 53-year-old Caucasian woman, living in the Cevennes area (south of France), with RA (diagnosed in 1999) was treated with infliximab (3mg/Kg) for one year along with azathioprine (100mg/day) and corticosteroids. The RA disease was no longer active once the anti-TNF α treatment was started, however, after the 9th infusion of infliximab she had night sweats and moderate asthenia.

Laboratory test analysis showed a C-reactive-protein of 51, an erythrocyte sedimentation rate of 59, and a pancytopenia (haemoglobin: 10g/dl, WBCs: 2,400, and PLTs:114,000). During hospitalisation she presented a fluctuant fever with several peaks at 40°C. Physical examination revealed a splenomegaly with no hepatomegaly. Bone marrow examination (smear and core biopsy) revealed a non-specific reactive lymphoid infiltration with no myelodysplasia. A CT scan revealed a heterogeneous splenomegaly with infarcts.

Finally, after a second bone marrow aspiration, the direct examination of May-Grunwald-Giemsa stained smears detected *Leishmania* parasites, and serology was positive [IFAT: 1/5120 (cut off: 1/80); ELISA: 2.33 (cut off: 0.32)]. The positive polymerase chain reaction of blood and bone marrow confirmed diagnosis. Cultures on Novy, MacNeal, and Nicolle medium (NNN) and biochemical characterization of the *Leishmania* isolates by isoenzymatic electrophoresis identified *Leishmania infantum* MON-1. Infliximab and azathioprine treatments were withdrawn. The patient was treated intravenously with amphotericin B, first 0.7 mg/kg/day for 15 days, then 0.7mg/kg every 15 days for four months (cumulative dose of 15.4mg/kg). She did not develop any adverse events and after 15 days of treatment, the PCR of blood and bone marrow no longer revealed parasites; bone marrow cultures were negative 2.5 months later. Five months after infliximab was stopped, we started etanercept (25mg x 2/week) because of important polarthritis' symptoms. Currently, no further clinical or biological symptoms of leishmaniasis were detected.

Discussion

Leishmaniasis is a parasitic disease caused by the transmission, in endemic areas, of the promastigote stage of the protozoan *Leishmania* from wild or domestic reservoirs (usually canine in the Mediterranean basin) to other mammals by sandfly bites. *Leishmania* spp. are obligate intraphagocytic micro organisms of the mononuclear phagocytic system. Unless the micro organ-

ism is eliminated by immune mechanisms, the parasite multiplication within the phagolysosome gives rise to clinical symptoms. Experimentally, the protozoan parasite *Leishmania major* infects the mononuclear phagocytes, and infection control depends on adequate activation of the infected macrophages to kill parasites and inhibit their replication (7). *In vitro* studies with murine macrophages revealed that soluble factors secreted by activated T cells mediate the activation of macrophages to produce nitric oxide (NO), resulting in killing or controlling *L. major* parasites (8). Macrophage activation by soluble factors (cytokines) depends on gamma interferon (IFN- γ) as well as tumor necrosis factor (TNF) (9, 10).

In humans, the *leishmania* disease includes visceral, cutaneous, and mucocutaneous forms. Usually parasites of *L. infantum* complex are prone to induce a visceral form of the disease, and less frequently, cutaneous forms. Immunosuppression facilitates the diffusion of the parasite, and the clinical picture is worsened (11). Diagnosis relies on the detection of the parasite in bone marrow smears, in the culture of blood or bone marrow on NNN medium, and with the polymerase chain reaction of blood and bone marrow. *Leishmania* is characterized by isoenzymatic electrophoresis.

Only one case of VL has been reported in RA patients treated with TNF α antagonists (infliximab) (5, 14). In our case, the clinical picture was characterized by fever, asthenia, splenomegaly, and pancytopenia. Also, inflammatory markers were increased. Corticosteroids, azathioprine along with infliximab, may have played a permissive

role. With an appropriate treatment the *Leishmania* infection was controlled (12). Four months following infection clearance, TNF α antagonists (etanercept) was started with clinical and biological follow-up. The patient was treated for one year with etanercept and no signs of VL had been detected. The Cevennes area, where she lived, is a well known focus of VL (11, 13). Due to the low incidence rate of this disease it is difficult to propose a screening for leishmaniasis before treating with biologics. However, for patients with a high risk of exposure (living in an endemic area) we should screen the patient with serology. Indeed, the disease could be due to the reactivation of a latent infection induced by immunosuppressive drugs or to a recent infection. Moreover, in these areas medical teams should be informed of this risk.

Conclusion

To our knowledge, this is the second case of VL reported in a patient treated with TNF α antagonist. This confirms the risk of opportunistic infections and the difficulties of diagnosis in these immunosuppressed patients. Although pancytopenia or thrombocytopenia could be due to a haematological form of lupus or rheumatoid arthritis, dysplasia and lymphoma, or side effects of methotrexate or other drugs, the association of fever, asthenia, hepatosplenomegaly, and pancytopenia should prompt the search for *Leishmania* in patients living in endemic leishmaniasis areas and treated with TNF α antagonists.

References

1. FDA: Safety update on TNF- antagonists: infliximab and etanercept. Arthritis Advisory Committee Meeting (August 17), *Food and Drug Administration, Center for Biologics Evaluation and Research*, 2001.
2. ELLERIN T, RUBIN RH et al.: Infections and anti-tumor necrosis factor alpha therapy. *Arthritis Rheum* 2003; 48: 3013-22.
3. IMPERATO AK, BINGHAM CO 3rd et al.: Overview of benefit/risk of biological agents. *Clin Exp Rheumatol* 2004; 22 (Suppl. 35): S108-14.
4. ROSENTHAL E, MARTY P et al.: Visceral leishmaniasis and HIV-1 co-infection in southern France. *Trans R Soc Trop Med Hyg* 1995; 89: 159-62.
5. BAIXAULI RUBIO A, RODRIGUEZ GORRIZ E et al.: [Rare opportunistic disease in a patient treated with immunosuppressive therapy for rheumatoid arthritis]. *An Med Interna* 2003; 20: 276-7 (in Spanish).
6. WALLIS RS, BRODER MS et al.: Granulomatous infectious diseases associated with tumor necrosis factor antagonists. *Clin Infect Dis* 2004; 38: 1261-5. Epub 2004 April 15.
7. JAMES SL: Role of nitric oxide in parasitic infections. *Microbiol Rev* 1995; 59: 533-47.
8. BELOSEVIC M, DAVIS C et al.: Regulation of activated macrophage antimicrobial activities. Identification of lymphokines that cooperate with IFN-gamma for induction of resistance to infection. *J Immunol* 1988; 141: 890-6.
9. GREEN S, CRAWFORD R et al.: *Leishmania major* amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. *J Immunol* 1990; 145: 4290-7.
10. GREEN S, MELTZER M et al.: Activated macrophages destroy intracellular *Leishmania major* amastigotes by an L-arginine-dependent killing mechanism. *J Immunol* 1990; 144: 278-83.
11. DEREURE J, REYNES J et al.: Visceral leishmaniasis in HIV-infected patients in the south of France. 245-6.
12. BERMAN J: Current treatment approaches to leishmaniasis. *Curr Opin Infect Dis* 2003; 16: 397-401.
13. BASSENNE I, PRATLONG F et al.: Human leishmaniasis in Cevennes area: retrospective study 1933-1994. *Méd Mal Infect* 1996; 26: 1164-8.
14. WALLIS RS, BRODER M et al.: Granulomatous infections due to tumor necrosis factor blockade: correction. *Clin Infect Dis* 2004; 39: 1254-5.