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ABSTRACT
Type 1 diabetes mellitus (T1D) and in-

flammatory bowel diseases (IBD) are

multifactorial disorders of autoimmune
origin.

Several microbial agents have been
reported to be associated with the de-
velopment of type I diabetes and in-

flammatory bowel diseases in animal

models by different mechanisms.

These models which resemble the
phenotype of the human disease they
mimic, can be very useful to identify
important pathogenetic mechanisms,
as well as therapeutical targets to treat
the disease.

This review is focused on the immune
inflammatory pathways which are con-
sidered to be associated with the patho-
genesis TID and IBD in transgenic
mice.

Introduction

Autoimmune diseases such as Type 1
(insulin dependent) diabetes mellitus
(T1D) and inflammatory bowel dis-
eases (IBD) can occur in genetically
predisposed individuals exposed to dif-
ferent environmental factors and/or in
the presence of immunoregulatory dys-
functions (1-5).

Autoimmunity is most likely initiated
during the course of an infectious epi-
sode when inflammation is provoked in
the target tissue (i.e., insulin-producing
[ cells in the pancreatic islet or intesti-
nal epithelial cells) either by direct cy-
totoxic effects of the microbial agent or
by immunopathologic reactions against
a persistent infection which causes
chronic inflammation within the target
tissue (6).

In T1D, viruses play a primary role as
triggering agents (7, 8) because they
can induce a strong immune response
and can infect insulin-producing f cells
leading to local inflammation (9).
Infection-associated inflammation may
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involve the release of cytokines and
chemokines which can be sufficient to
activate lymphocytes directed against
self antigens leading to initiation and/or
exacerbation of autoimmune diseases.
In IBD, lesions of the gastrointesti-
nal tract have been associated with
increased production of macrophage-
derived proinflammatory cytokines
such as IL-1p, IL-6, and TNF-a (10).
Mouse models for autoimmune dis-
eases can be very useful to explore the
different immune-inflammatory path-
ways which are potentially involved in
the pathogenesis of a specific disease
(11-13).

To investigate the aetiopathogenesis of
T1D and IBD, several animal models
have been developed (14, 15).

With these models, the role of func-
tionally distinct factors, including cells
of the innate and immune system, cy-
tokines and chemokines, receptor and
their ligands which represent a po-
tential therapeutic target for the treat-
ment of the disease (16-18), has been
described.

Studies conducted in mice genetically
deficient of macrophage migration in-
hibitory factor (MIF) have shown that
this cytokine plays a major role in im-
munoinflammatory diabetogenic path-
ways both in mice made diabetics with
multiple low doses of streptozotocin
and in non-obese diabetic (NOD) mice
with accelerated forms of autoimmune
diabetes, because of its capacity to in-
duce Thl inflammatory cytokines (19).
Furthermore, data from animal mod-
els obtained by T cell transfer colitis
in transgenic mice for genes encod-
ing immunoglobulin and T cell recep-
tor (TCR) recombination events have
elucidated the central role of the adap-
tive immune response in the regulation
of colitis development. These studies
revealed that there are different fac-
tors which play important roles for the



development of T cell transfer colitis
in severe combined immunodeficient
(SCID) recipient mice including the
lack of regulatory T cells (Treg) in
the transferred T cell population and
the expression of chemokine receptor
CXCR3 by the colitogenic T cells.

All the molecules identified in these
different pathways may represent po-
tential therapeutic targets for the treat-
ment of T1D and IBD.

Exploiting the crosstalk between
infections, innate immunity and
beta cell destruction in autoimmune
diabetogenesis

T1D is a multifactorial disorder caused
by the lack of endogenous insulin
which is thought to be a consequence
of an immune attack mediated by au-
toreactive T cells and macrophages
against pancreatic [-cells. The key role
played by the immune system in the
pathogenesis of the disease has focused
much attention on identifying immuno-
therapeutical approaches that may halt
or delay f-cell destruction in predia-
betic individuals or those patients with
newly diagnosed disease (20).

Animal models of human T1D, such as
the NOD mouse, the diabetes-prone BB
rat, and the mouse made diabetic with
multiple low doses of streptozotocin
(MLD-STZ), have extensively been
used as in vivo tools to study immun-
opathogenic pathways and to identify
novel immunotherapeutical approaches
(21, 22).

Both in these models and in humans,
the diabetogenic potential of autoreac-
tive T cells and macrophages appear to
be related to their capacity to secrete
type 1 proinflammatory cytokines such
as IL-1f, interferon-gamma, TNF-al-
pha, IL-12, and IL-18 (23).

MIF is a pleiotropic cytokine produced
during immune responses by activated
T cells, macrophages, and a variety of
non-immune cells (19, 24, 25). Consti-
tutive expression of MIF mRNA and
protein is found in various non-im-
mune cells within normal tissue, such
as anterior pituitary cells; cardiac myo-
cytes; parenchymal cells within liver,
brain, or kidneys; or pancreatic islet
[B-cells. Notably, in many of those tis-
sues the expression and release of MIF
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are significantly up-regulated under
various pathological conditions, such
as atherosclerosis, glomerulonephritis,
multiple sclerosis, colitis, type 2 diabe-
tes, and pancreatitis, thus implicating a
role for MIF in the disease process. In-
deed, recent studies using neutralizing
antibodies (Ab) or MIF-deficient ani-
mals demonstrated that MIF is a crucial
mediator of several immunoinflam-
matory disorders in rodents, includ-
ing Gram-negative and Gram-positive
sepsis, delayed-type hypersensitivity,
leishmaniasis, glomerulonephritis, ar-
thritis, experimental autoimmune en-
cephalomyelitis, experimental autoim-
mune myocarditis, and colitis (19, 24,
25).

In contrast to the possible pivotal role
of MIF in autoimmune diseases, its
role in the pathogenesis of human T1D
is still unclear. Although elevated MIF
gene expression has been detected in
spontaneously diabetic NOD mice dur-
ing development of the disease, and ex-
ogenously administered recombinant
MIF exacerbated disease development,
the circulating levels of MIF were
found to be decreased in patients with
recent-onset T1D. However, despite
these conflicting data, MIF possesses
biological characteristics that antici-
pate a role for this cytokine in autoim-
mune diabetogenesis. These include the
capacity of MIF to stimulate delayed-
type hypersensitivity responses (19,
24, 25) which mediate B-cell destruc-
tion during development of T1D and
to up-regulate the production of other
proinflammatory cytokines and soluble
mediators involved in the pathogenesis
of the disease, such as TNF-alpha, IL-
1P, and nitric oxide (NO) (23).

MIF may also influence cell-mediated
P-cell destruction through metabolic
pathways, because it is constitutively
expressed and secreted together with
insulin from pancreatic p-cells and
acts as an autocrine factor to stimulate
insulin release. This might contribute
to immunoinflammatory diabetogen-
esis by favoring the expression on f3-
cells and the presentation to immune
cells of antigens (Ag) which are up-
regulated when functional activity is
augmented (20). Thus, MIF possesses
both hormonal and immunological
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properties which qualify it as a poten-
tially important mediator in the initial
events of P-cell dysfunction and de-
struction.

These observations prompted us to
undertake this study evaluating the be-
havior of endogenous MIF during the
development of immunoinflammatory
diabetes in preclinical models. By us-
ing anti-MIF monoclonal or polyclonal
antibodies and mice with genetic MIF
deficiency (26, 27) we have shown that
this cytokine plays a major role in im-
munoinflammatory diabetogenic path-
ways both in mice made diabetics with
multiple low doses of streptozotocin
and in NOD mice with accelerated
forms of autoimmune diabetes (26, 27).
Even more importantly for the transla-
tion of these findings to the clinical set-
ting, the small molecule (S, R)-3-(4-hy-
droxyphenyl)-4,5-dihydro-5-isoxazole
acetic acid methyl ester (ISO-1) which
is the leading compound obtained
through a strategy aimed at designing
MIF antagonist drugs by targeting the
catalytic site of MIF and which acts
as a selective pharmacological inhibi-
tor of MIF was also found to prevent
MLDS-induced diabetes (28).

In addition, our studies in mice made
diabetics with MLDSZ show that the
MIF protein is significantly elevated
in islet cells during the development of
diabetes and that negating the activity
of endogenous MIF reduced clinical
and histopathological features of MLD-
STZ-induced diabetes, such as hyperg-
lycemia and insulitis (26, 27). Protec-
tion from diabetes was associated with
reduced islet Ag-specific proliferative
response of lymphocytes and defective
adhesive cell-cell interactions under ex
vivo conditions. In addition, neutraliza-
tion of MIF down-regulated the ex vivo
local and peripheral secretion of the
proinflammatory mediators TNF-alpha,
IFN-gamma, and NO; simultaneously,
the capacity of spleen mononuclear
cells to produce the antiinflammatory
cytokine IL-10 was significantly in-
creased by in vivo abrogation of MIF
activity (26, 27).

These data warrant studies aimed at
evaluating the possible role of spe-
cific MIF inhibitors in human type 1
diabetes.
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Switching from reductionistic to
holistic thinking in the natural
history of IBD: lessons from animal
models

IBD comprises two distinctly differ-
ent chronic diseases, ulcerative colitis
(UC) and Crohn'’s disease (CD). Genet-
ic susceptibility, environmental factors
and immunoregulatory dysfunctions all
play a role in etiology, development,
course and prognosis of the disease.
UC is a diffuse mucosal inflammation
limited to the colon whereas CD, by
contrast, is a patchy transmural inflam-
mation that may affect any part of the
gastrointestinal tract. The prevalence of
IBD in Europe and the US is > 1:1000
(29).

The last decade has witnessed several
new animal models for both acute and
chronic colitis. T cell transfer colitis in
immunocompromised SCID or RAG™
mice is the animal model which most
closely resembles or mimics the two
human major disease categories of
chronic colitis (30, 31). In T cell trans-
fer colitis, the colon of the diseased
mice shows a progressing diffuse mu-
cosal inflammation, patchy transmural
inflammation, diarrhea, progressive
weight loss and finally death within 4-
6 weeks after T cell transfer.

In the T cell transfer model, genetic and
immunological susceptibility relates to
the recipient’s lack of an adaptive im-
mune system due to the presence of
mutations in genes encoding immu-
noglobulin and TCR recombination
events (SCID or RAG™ recipients).
This allows for an uncontrolled expan-
sion in the recipient of the transferred
colitogenic CD4* T cell subset provid-
ed that regulatory T cells (Treg) have
been depleted prior to T cell transfer.
As in human counterparts, T cell pro-
liferation is driven by antigens derived
from the gut bacterial commensal flora
environment. Thus, no proliferation
of transferred T cells takes place and
colitis development is totally absent in
SCID recipients kept under germ free
conditions (32).

Our laboratory has been involved in the
characterization of a population of in
vitro generated Tregs which are more
efficient than conventional CD4*CD25*
Tregs in the prevention of colitis when

Table I. Differences between dendritic cell (DC)-induced T-regulatory (Treg) cells and
prototype CD4* CD25* Treg (modified from ref. 33).

DC/CD4* co-culture-induced Treg cells
Derived in vitro from CD4* T cells
CD25 very high

CD45RB hish

CD69 low/absent

CD62L (L selectin)hish

Secrete inhibitory molecules
Activation uncertain uncertain
Resistant to IL-2

Inhibition at 2% Treg comixture

Prototype CD25* Treg cells

Present in freshly obtained CD4* CD25* T cells
CD25 high

CD45RB intermediaie

CD69 low/absent

CD62leemledlale

Do not secrete inhibitory molecules

Activation dependent

Inhibited by IL-2

Inhibition at 16% Treg comixture

coinjected into SCID mice together
with effector CD4*CD25-T cells. These
Tregs were generated in vitro by coc-
ulture of immature dendritic cells (DC)
with unfractionated CD4* T cells for
several days (33). Table I shows their
characteristics compared with tradition-
al Tregs. The DC cocultured Tregs show
ten times higher expression of CD25
and L selectin (CD62) and eight times
higher inhibitory activity in vitro than
prototype Tregs. They are functionally
resistant to IL-2 and around 50% of
their inhibitory activity in vitro is me-
diated by soluble substances which are
not IL-10 or TGF f. Thus it appears that
crosstalk between T cells and immature
DCs results in subsets of Tregs with a
particular phenotype and an increased
functional activity.

Our laboratory has recently been focus-
ing on the involvement of chemokines,
their receptors and other immune regula-
tory molecules in SCID mice transplant-
ed with colitogenic CD4* T cells deplet-
ed of CD25* Treg and in mice protected
from colitis by coinjected Tregs. In the
protected mice the locally expressed in-
flammatory chemokine receptors CCR1
and CXCR3 and their corresponding
chemokine ligands were found to be
down modulated (34). In accordance
with these results, deletion of CXCR3 in
transferred and potentially colitogenic
CD4*CD25™ T cells ameliorated colitis
development suggesting that CXCR3
expression is of importance for enter-
oantigen priming of the effector T cells
and/or their migrating into the gut wall
as well as their inflammatory potential.
In contrast, lack of CXCR3 expression
by Tregs does not affect their protective
capacity in vivo (35).
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In our most recent attempt to identify
pathways of importance for immune
regulation in SCID mice protected
from colitis by Tregs we studied gen-
ome-wide mRNA expression profiles
of inflamed and non-inflamed gut. The
mRNA expression profiles of inflam-
matory cytokines, chemokines and cer-
tain growth factors were significantly
down regulated in Treg protected mice.
In particular, transcription factors such
as STAT3, GATA2 and NF-kB, the cy-
tokine IL-1f and the chemokine recep-
tors CXCR3 and CCR1 as well as their
ligands appear to play a central role in
the inflammatory process and might
alone or in combination represent new
targets for future therapeutical ap-
proaches (36).

Most recent data suggest that the enter-
ic nerve system and in particular sub-
stance P neurokinin receptor 1 (NKR-
1) signaling plays an important part in
the control of disease development in
the T cell transfer colitis model. Thus,
selected NKR-1 antagonists appeared
to be powerful inhibitors of enteroan-
tigen-specific T cell reactivity in vitro
and capable of ameliorating disease
development in vivo.
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