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Abstract
Objective

The mechanism by which low dose methotrexate (MTX, the gold standard treatment for rheumatoid arthritis) exerts its 
anti-infl ammatory effect in rheumatoid arthritis (RA) patients is still debated. Lately, the MTX immunosuppressive effect 

has been related to apoptosis, especially in active RA patients, with ROS involvement. 

Methods
In the present research we investigated MTX oxidative effect and its ability to modulate immune balance in active versus 

non-active RA patients. 

Results
Our results show that MTX induces IL-10 secretion (a TH2 cytokine) and signifi cantly reduces TH1 profi le in Peripheral 

Mononuclear Cells (PMNC) derived from active RA patients (n=28). Additionally, we found that MTX modulates the 
immune status towards TH2 dominance by decreasing the IL-12R and the CXCR3 receptors typical for the TH1 population. 

Moreover, MTX was found to inhibit the production of nitric oxide (NO) in these patients, a phenomenon that might 
contribute to MTX action toward cytokine homeostasis. A signifi cant correlation was found between MTX IL-10 induction 

and NO inhibition in active RA patients. 

Conclusions
Our data suggest that, in active RA patients, apoptosis induction by MTX may be primarily due to IL-10 production via 

modulation of oxidative stress, which may restore the critically important immune balance. These fi ndings may contribute 
to determining which group of RA patients may better respond to MTX therapy. 
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Introduction
Rheumatoid arthritis (RA) is a chronic 
destructive synovitis affecting the bone 
and joints. RA has been recognized as 
a chronic systemic autoimmune infl am-
matory disease, and immunological ef-
fects have been shown to play an im-
portant role in its pathogenesis (1-3). 
Pathologically, RA is characterized by 
proliferation and activation of lym-
phocytes that are predominantly of the 
CD4+/T helper phenotype. The syno-
vial tissue in RA, termed the “pannus”, 
becomes infi ltrated with lymphocytes 
that are predominately of the CD4+/T 
helper phenotype (2, 4, 5). In this dis-
ease, large quantities of proinfl amma-
tory cytokines, especially of the TH1 
profi le, were found in the synovial fl uid 
and membrane (6, 7). These cytokines 
are produced by activated macrophages 
or T cells, and strongly contribute to 
synovial cell proliferation and cartilage 
destruction in RA (8).
Low dose methotrexate (MTX) has be-
come a standard treatment for patients 
suffering from active RA (9-12). Sev-
eral mechanisms have been suggested 
for MTX action as an anti-infl ammato-
ry and immunosuppressive agent at the 
cellular level. These included the MTX 
inhibitory effect on folate dependent en-
zymes via polyglutamated derivatives, 
inhibiting proliferation (13-15) and 
MTX mediation of adenosine release, 
suppressing infl ammation (16, 17).
Recently, MTX anti-infl ammatory ac-
tion has been related to the induction 
of apoptosis. MTX was found to induce 
apoptosis in activated healthy T cells (2, 
15, 18), in lymphocytic cell lines (10) 
and in CD4+ cells derived from active 
RA patients (19). However, the actual 
mechanism of MTX apoptosis induc-
tion has not yet been fully elucidated.
One of the possible inducers of apopto-
sis is intracellular oxidation or oxidative 
stress by ROS (20, 21). Reactive oxy-
gen species (ROS), including reactive 
nitrogen species such as nitric oxide 
(NO), are biologically active oxygen 
derivatives, which are becoming recog-
nized as important mediators of infl am-
mation, such as in RA (22) and apopto-
sis due to their redox potential (23, 24). 
Few attempts have been made to relate 
MTX immunosuppressive effect in RA 

patients to ROS production (25-30). We 
have recently shown an apoptotic effect 
of MTX induced via an ROS dependent 
pathway (10). 
Nitric oxide (NO) has been shown to be 
an important mediator of diverse physi-
ologic and pathologic processes, includ-
ing arthritis (31, 32). NO, a lipid- and 
water-soluble gas, is ideally suited as a 
potent infl ammatory mediator because of 
its strong reactivity with oxygen, super-
oxide, and iron-containing compounds. 
Previous work has provided evidence 
for increased production of systemic 
NO in rheumatoid arthritis (33-36) and 
increased expression of inducible NO 
synthase (NOS2) and NO production 
(37). It is debated whether NO exacer-
bates or reduces the infl ammatory proc-
esses (38). Since RA is T-cell mediated, 
we wished to assess the potential NO 
regulation by MTX of T-lymphocytes, 
and specifi cally their cytokine expres-
sion. MTX effect on NO production and 
subsequent NO regulation of cytokine 
balance in specifi c groups of RA pa-
tients has never been reported, however 
in a single report, MTX at therapeutic 
concentrations in vitro has been shown 
to inhibit the production of NO in cul-
tured rabbit articular chondrocytes (39).
Few attempts have been made to exam-
ine the MTX effect on cytokine balance 
in RA patients. It has been reported that 
in early stage patients, MTX increases 
the IL-10 and IL-4 cytokines, which are 
both characteristic of Th2 cells and re-
duced TNF-α (40). In a different report, 
long term RA therapy with MTX in 
combination with low dose corticoster-
oids affected the predominance of Type 
1 cytokines toward normalization of 
the cytokine balance in both CD4+ and 
CD8+ T lymphocytes (41).
The aim of the present study was there-
fore to determine the MTX effect on 
oxidative stress and on the normaliza-
tion of cytokine balance in active and 
non-active RA patients. A possible 
distinct effect of MTX in the different 
RA groups may contribute to better 
prediction of therapy effi ciency for RA 
patients. 

Materials and methods
The present study was conducted in 
collaboration with the Tel-Hashomer 
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Medical Center, Israel, in accordance 
with the Declaration of Helsinki (IRB 
certifi cation No. 3730/2005). Blood 
samples were obtained from extensive 
populations of RA patients, diagnosed 
according to the ACR criteria. The sub-
jects were asked to give their informed 
consent to donate 5 ml blood for ex-
amination. The blood samples were 
analyzed at a cell population level using 
FACS fl ow cytometry.
Mononuclear cells (MNC) were isolat-
ed from peripheral blood leukocytes of 
25 RA patients using the Ficoll Paque 
procedure. The RA patients were clas-
sifi ed according to the American Col-
lege of Rheumatology (ACR) criteria 
(43). The six criteria for disease activity 
assessment (duration of morning stiff-
ness, fatigue, joint pain by history, joint 
tenderness or pain in motion, soft tis-
sue swelling in joints or tendon sheaths, 
and erythrocyte sedimentation rate) 
were monitored for each patient. RA 
patients having signs of remission were 
defi ned as non-active, and RA patients 
without signs of remission were defi ned 
as active, according to the ACR criteria. 
No patients were included who were 
taking drugs known to affect the im-
mune system, other than MTX (7.5-15 
mg/kg/week). Folate supplementation 
was being routinely administered (1 to 
2 times per week up to 5 mg). Blood 
was collected within 4-6 days after oral 
administration of MTX. All patients 
took MTX therapy for at least 6 months 
before our in vitro examinations.
Following separation, cells were 
washed twice in saline and once in 
PBS, then suspended in enriched RPMI 
medium (with 10% fetal calf serum) at 
a concentration of 1x106 cells/ml. Be-
fore any cytometric analysis, viability 
was checked by trypan blue exclusion. 
Each type of experiment was performed 
in triplicate.

Viability test 
Plasma membrane integrity and cell  
viability were determined by the trypan 
blue (TB) exclusion test. A viable cell 
excludes acidic dyes, such as trypan 
blue, therefore their uptake is indica-
tive of irreversible membrane damage 
preceding cell death. Cells were loaded 
with the trypan blue dye on a hemato-

cytometer slide at the ratio 1:1 (v/v) and 
analyzed by light microscopy. The per-
centage of dead cells was determined 
by counting a total of 150-200 cells per 
independent experiment. 

Intracellular measurement of cytokines
Intracellular IL-10 (classical T helper-2 
cytokine) and IL-12 (T helper 1 cyto-
kine) were measured in order to clas-
sify the RA patients according to their 
TH1/TH2 cytokine profi le, and their 
in vitro response to MTX. 1x106 cells 
were fi xed with 4% paraformaldehide 
in PBS, followed by permabilization 
with 0.1% Saponin in HBSS. Staining 
was performed with anti-human IL-12 
(FITC conjugated) and anti-human IL-
10 (PE conjugated) antibodies (R&D 
Systems, Inc., Minneapolis, MN, USA). 
The cytokine measurements were per-
formed using fl ow cytometry (FACs-
can, Becton Dickinson, Mountainview, 
CA, US).  

Cytokine receptor evaluation
MNC were evaluated under free serum 
conditions for CCR3, CXCR4, IL-12R 
and IL-4R expression. Flow cytometric 
staining and analysis of the receptors 
were performed as described earlier  
(44). Briefl y, the cells were stained in 
PBS (Ca and Mg-free), supplemented 
with 5% BCS (Hyclone; Logan, Utah).  
Primary mAbs were detected with sec-
ondary phycoerythrin or fl uorescein 
isothiocyanate (FITC)-conjugated goat 
antimouse mAbs (Sigma) (1:100) or 
antirat antibodies. After the fi nal wash, 
cells were fi xed in 1% paraformal-
dehyde prior to FACS analysis using 
FACscan (Becton-Dickinson, Moun-
tainview, CA, USA).

Measurement of intracellular ROS
The production of ROS was fl uoro-
metrically estimated using a fl uores-
cent probe dihydro-rhodamine which 
is oxidized to a fl uorescent intercala-
tor rhodamine by cellular oxidants, 
particularly superoxide radicals. Cells 
were fi rst incubated in the presence of 
10µM DHR1239 (from Calbiochem, 
Darmstadt, Germany) for 15 min in in-
complete RPMI 1640 medium (without 
FCS), containing 25 mM Hepes buffer 
solution, at 37° C. At the end of probe 

loading, cells were washed with PBS. 
The kinetics of RH123 fl uorescence in-
tensity (Excitation: 488nm, Emission: 
530nm) resulting from oxidation of 
DHR123 were measured using the Te-
can spectrofl uorimeter. 

Measurement of intracellular NO
The production of NO was fl uoromet-
rically estimated using a fl uorescent 
probe DAF (from Calbiochem, Germa-
ny). All cells were fi rst incubated in the 
presence of 1μM DAF, and at the end of 
probe loading, washed with PBS. The 
kinetics of DAF fl uorescence intensity 
resulting from its oxidation were meas-
ured with the Tecan spectrofl uorimeter. 

Data analysis 
Data are expressed as mean ± SD, and 
were analyzed by the two-tailed paired 
Student t-test. Differences were consid-
ered signifi cant at p ≤ 0.05. Correlations 
were assessed using linear correlation 
coeffi cients, and in cases when the data 
were not normally distributed we used 
non-parametric correlation coeffi cients 
(Kendall’s tau-b and Spearman’s corre-
lation coeffi cients).

Results
In the present study, we assessed the 
connection between the previously 
demonstrated immunosuppressive ef-
fect of MTX (in vitro) and its hypothe-
sized ability to regulate the immune sta-
tus of RA patients toward homeostasis. 
All our experiments were done in both 
non-active and active RA patients, as 
these two groups were previously found 
to differ with respect to their immune 
cell status (19). 
First, we examined the cytokine balance 
(TH1/TH2 profi le) in non-active RA 
patients clinically treated or untreated 
with MTX. Three untreated and 6 clini-
cally MTX treated (7.5-12.5mg/week) 
non-active patients, exhibited differ-
ent profi les (Fig. 1A). The untreated 
subjects showed 9% CXCR3 positive 
cells and 6% CCR4 positive cells, im-
plying TH1 dominance. Non-active RA 
patients clinically treated with MTX 
exhibited a slight difference, with 7% 
CXCR3 and 6.5% CCR4 positive cells.
Next, we tested the cytokine production 
typical for the CD4+ subpopulations: 
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IL-10, a TH2 cytokine, and IL-12, a 
TH1cytokine. In addition, we assessed 
the cellular production of nitric oxide 
and ROS, which are known to modu-
late the immune response. Three un-
treated non-active RA patients and 8 
non-active patients clinically treated 
with MTX showed different behaviors 
of cytokine production. A signifi cant 
difference (pdifference (pdifference ( =0.04) in IL-10 production 
was observed between MTX-treated pa-
tients and non-active patients untreated 
with MTX. Untreated patients exhib-
ited an average of 6.2±0.28% positive 
cells while the treated subjects showed 

5.1±0.32% (Fig. 2A). IL-12 production 
did not differ between the 2 groups and 
was ~ 9±1.7% on average. 
Interestingly, when NO generation 
was measured in the same patients, 
an opposite effect was observed. The 
MTX-treated patients showed a signifi -
cant increase in NO generation (from 
5600±330 to 7700±550, p<0.05) as 
compared to the untreated patients (Fig. 
2C). In order to better understand the 
effect of MTX on oxidative stress, ROS 
production was measured. A non-signif-
icant difference in ROS production was 
observed in the two groups (Fig. 2C). 

Our next experiment tested the involve-
ment of MTX therapy in cytokine bal-
ance and its possible connection to im-
munosuppression in active RA patients. 
Similarly to non-active patients, we fi rst 
analyzed the lymphocyte subpopulation 
TH1/TH2 in active RA patients treated 
(n=7) or untreated (n=5) with MTX. As 
it is seen in Fig. 1B, MTX (in vivo) sig-
nifi cantly reduces CXCR3 expression 
(a typical TH1 receptor, from an aver-
age of 19.4% CXCR3 positive cells in 
untreated RA patients to 12.5% in MTX 
treated patients, p = 0.04) and enhances 
CCR4 expression (a typical TH2 recep-
tor, from an average of 6.7% to 8.25% 
positive cells). 
To further validate our results, we tested 
two other distinctive receptors typical 
for the TH1/TH2 subpopulations. IL-
12R was measured as a TH1 indicator 
and IL-4R as a TH2 indicator. A pattern 
of TH1 dominance was observed in the 
untreated group (n=4, an average of 7% 
of IL-12R+ cells), whereas in the treat-
ed group (n=7) the average of IL-12R+ 
cells was 4.6%, p<0.05 (Fig. 1C). 
Then we checked the lymphocyte pro-
duction of IL-10, IL-12 and NO in ac-
tive RA patients (n=12). No signifi cant 
differences in IL-12 production were 
observed (data not shown). However, 
notably, in active RA patients, an oppo-
site pattern was seen compared to non-
active patients. Untreated active patients 
exhibited a low amount of IL-10 positive 
cells (Fig. 2B). However, MTX-treated 
patients demonstrated a signifi cant in-
crease in IL-10 levels (an increase from 
4.3%±0.86% to 7.3%±0.73, p=0.05). 
This may indicate a shift toward TH2 
dominance. Concomitantly, MTX-treat-
ed patients showed lower levels of NO 
production as compared to untreated pa-
tients (Fig. 2D). 
Considerable correlations were found 
between NO and IL-10 production in 
active MTX-untreated RA patients 
(r=0.6, p=0.05, n=8) and in active RA 
patients clinically treated with MTX 
only (r=0.78, p=0.04, n=13). 
We further checked the possible involve-
ment of MTX in ROS generation. MTX 
signifi cantly increased the overall ROS 
production in active RA patients by 27% 
(Fig. 2D). Notably, MTX decreased the 
NO generation in these patients.

Fig. 1. (A) CCR4 
and CXCR3 expres-
sion by CD4+ cells 
derived from non-
active RA patients 
clinically treated 
or not with MTX. 
*= p≤0.05. UT: un-
treated patients.
(B) CXCR3 and 
CCR4 expression 
by MNC derived 
from active RA pa-
tients treated or un-
treated with MTX. 
(C) IL-12R and IL-
4R expression by 
MNC derived from 
active RA patients 
treated or untreated 
with MTX.
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Thus, our results show that MTX in-
duces IL-10 production and inhibits 
nitric oxide secretion and CXCR3 and 
IL-12 receptors in mononuclear cells 
derived from active rheumatoid arthri-
tis patients only. 
To further validate our results, the in 
vitro effects of MTX at the optimal con-
centration of 0.1 μM (2) were measured 

on MNC derived from active and non-
active patients clinically treated with 
MTX. The results, shown in Tables 
I and II, indicate the same patterns of 
change, yet less pronounced. Especially 
signifi cant changes in most of the pa-
rameters were noted in active patients; 
whereas in non-active patients, only the 
ROS increase was signifi cant. 

Discussion
The objective of the present study was 
to investigate in vitro the oxidative sta-
tus and cytokine balance in RA patients 
with a specifi c disease status: active or 
non-active, with the aims of clarifying 
the MTX immunosuppressive/anti-in-
fl ammatory mechanism and predicting 
MTX effi ciency in the different groups 
of RA patients.
RA is a chronic autoimmune disease 
characterized by TH1 dominance (6, 7). 
In addition it has been found that free 
radicals play a fundamental role in RA 
pathogenesis (45, 46). It is therefore of 
great importance to increase the TH2 
secretion in order to restore the cytokine 
balance, and to reduce oxidative stress. 
Low dose MTX, the standard clinical 
treatment for RA, has been shown to 
exert an immunosuppressive effect in 
RA patients (15, 18, 19), although its 
mechanism of action is not yet fully un-
derstood. Recently, it has been related 
to induction of apoptosis through ROS 
involvement (10, 20, 21). MTX has 
been reported to induce cytokine bal-
ance (40, 41) and enhance anti-infl am-
matory cytokines (47, 48). 
Our results demonstrate two distinct/op-
posite patterns of MTX action in active 
and non-active RA patients. In active 
RA patients only, MTX has been shown 
to selectively reduce TH1 profi le (de-
creased CXCR3 and IL-12 receptors) 
and increase TH2 profi le (moderately 
raised CCR4 and IL-4R) toward cy-
tokine balance, whereas in non-active 
patients this phenomenon was absent. 
Moreover, MTX reduced NO secre-
tion and enhanced ROS generation in 
active RA patients only, in addition to 
enhancing IL-10 secretion, a typical 
TH2 cytokine. These results are rein-
forced by our previous studies. When 
investigating the MTX apoptotic effect 
on CD4+CD28+ and CD4+CD28- sub-
populations, we found that the apoptotic 
effect was more pronounced in CD4+

cells derived from active RA patients in 
contrast to non-active (19). 
There is a controversy over the mecha-
nism by which NO regulates cytokine 
expression in RA patients, and whether 
it is selective for certain cytokines. Thus 
one group hypothesized that NO might 
promote TH2 responses in mice and 

Fig. 2. (A) IL-10 production by MNC derived from non-active RA patients clinically treated or not with 
MTX. (B) IL-10 production by MNC derived from active RA patients, treated or untreated with MTX. 
(C) NO and ROS induction in non-active RA patients, treated or untreated with MTX. (D) NO and ROS 
production in Active RA patients, treated or untreated with MTX. Correlations were found between 
NO and IL-10 production in active MTX-untreated RA patients (r=0.6, p=0.05, n=8) and in active RA 
patients clinically treated with MTX only (r=0.78, p=0.04, n=13).

Table I. MNC derived from non-active RA patients, clinically treated with MTX and in     
addition in vitro treated with 0.1 μM MTX (n. of patients = 3). *p*p* < 0.05 (when comparing in 
vitro treated with non-treated MNC).

 % CCR4 % CXCR3 % IL-10 NO production  ROS
 Positive Cells  Positive cells  Positive cells  (AU) production (AU)

MTX  6.5% ± 0.4 7.1% ± 0.8 5% ± 0.6 7300 ± 450 2200 ± 180
in vivo treatment only 

MTX in vivo + 6.4.% ± 0.8 6.2% ± 0.5 4.4% ± 0.3 8100 ± 400 3500 ± 250*

in vitro treatment 

Table II. MNC derived from active RA patients, clinically treated with MTX and in addition 
in vitro treated with 0.1 μM MTX (n. of patients = 5). *p*p* < 0.05 (when comparing in vitro
treated with non-treated MNC).

 % CCR4 % CXCR3 % IL-10 NO production ROS
 Positive Cells  Positive cells  Positive cells  (AU) production (AU)

MTX 8.3% ± 0.5 12.5% ± 0.9 7  ± 0.8% 11000 ± 750 33000 ± 4000
in vivo treatment only 

MTX in vivo +  9.5% ± 0.6 9.5% ± 0.7* 9.1 ± 0.8%* 8500 ± 900* 42000 ± 3400*

in vitro treatment
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humans (49, 50). Contradictory studies 
reported that NO inhibits proliferation 
of cloned mouse TH1 and TH2 cells 
equally (51). We therefore assessed both 
the effect of MTX on NO regulation and 
on cytokine normalization in active and 
non-active RA patients.
NO has been earlier reported to selective-
ly modulate the lymphocytic TH1/TH2 
responses. In mouse stimulated macro-
phages it has been demonstrated to regu-
late TH1 cell development through the 
inhibition of IL-12 synthesis (52, 53). 
Here we show that in active RA patients, 
there is a signifi cant decrease in NO due 
to MTX. This decrease may be respon-
sible for the change in cytokine balance 
in active RA patients. This connection 
between NO decrease and TH2 enhance-
ment has been shown in various models 
(42, 54, 55). While a signifi cant decrease 
in NO production was observed, con-
comitantly, a signifi cant increase in ROS 
generation was found in active RA pa-
tients, which is an established phenom-
enon (56). We assume that ROS increase 
contributes to the apoptotic effect. The 
relation between high production of 
ROS and enhanced apoptosis has been 
demonstrated by many researchers: in 
spermatozoa (57), in brain tumors (21), 
and cell mitochondria (20, 21).
Thus, under the treatment by MTX, 
while NO decrease may contribute to 
cytokine homeostasis, ROS generation 
may be responsible for the apoptotic 
effect, leading to MTX benefi cial ac-
tion in active RA patients. Addition-
ally, there was found a large difference 
in ROS base line production between 
active and non-active patients, in pa-
tients untreated by MTX (Fig. 2C and 
D). This difference could contribute to a 
better distinction between the different 
activity statuses of the disease. ROS and 
NO generation could serve as a part of a 
battery of in vitro tests to better charac-
terize the immune status of MNC in in-
dividual patients (before or after MTX 
therapy), in addition to the differential 
TH1/TH2 balance and modulation by 
MTX found in active and non-active pa-
tients. Thus, these fi ndings may contrib-
ute to a better understanding of MTX 
effi ciency in different RA groups, and 
thus to optimizing and personalizing 
therapy for RA patients. 
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