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ABSTRACT
Objective. Systemic sclerosis (SSc) is 
a multiorgan disease with high mortal-
ity rates. Several clinical features have 
been associated with poor survival in 
different populations of SSc patients, 
but no clear and reproducible prognos-
tic model to assess individual survival 
prediction in scleroderma patients has 
ever been developed. 
Methods. We used Cox regression 
and three data mining-based classi-
fiers (Naïve Bayes Classifier [NBC], 
Random Forests [RND-F] and logistic 
regression [Log-Reg]) to develop a ro-
bust and reproducible 5-year prognos-
tic model. All the models were built and 
internally validated by means of 5-fold 
cross-validation on a population of 558 
Italian SSc patients. Their predictive 
ability and capability of generalisation 
was then tested on an independent pop-
ulation of 356 patients recruited from 5 
external centres and finally compared 
to the predictions made by two SSc do-
main experts on the same population. 
Results. The NBC outperformed the 
Cox-based classifier and the other 
data mining algorithms after internal 
cross-validation (area under receiv-
ing operator characteristic curve, AU-
ROC: NBC=0.759; RND-F=0.736; 
Log-Reg=0.754 and Cox= 0.724). The 
NBC had also a remarkable and better 
trade-off between sensitivity and specif-
icity (e.g. Balanced accuracy, BA) than 
the Cox-based classifier, when tested on 
an independent population of SSc pa-
tients (BA: NBC=0.769, Cox=0.622). 
The NBC was also superior to domain 
experts in predicting 5-year survival 
in this population (AUROC=0.829 
vs. AUROC=0.788 and BA=0.769 vs. 
BA=0.67). 
Conclusion. We provide a model to 
make consistent 5-year prognostic pre-
dictions in SSc patients. Its internal 

validity, as well as capability of gener-
alisation and reduced uncertainty com-
pared to human experts support its use 
at bedside. Available at: http://www.
nd.edu/~nchawla/survival.xls.

Introduction
Systemic sclerosis (SSc) is a complex 
autoimmune disease with multiorgan 
involvement that results in significant 
disability and morbility (1). Increased 
mortality ratios for SSc patients have 
been extensively reported across dif-
ferent countries (1-7) and many studies 
have focused on the analysis of factors 
that may eventually be associated with 
poor survival in scleroderma patients 
(5, 6, 8-16). For multivariate survival 
analysis, these studies have almost 
invariably relied on semi-parametric 
models, such as the Cox regression 
model (17). This approach, is the most 
widely used survival analysis method 
in the medical literature that is, howev-
er, not devoid of drawbacks and limita-
tions (18). The Cox proportional hazard 
method relies on assumptions that can 
be easily violated, especially in pres-
ence of time-dependent covariates and, 
also when these are taken into account, 
the choice of covariate form has great 
potential for bias and does not lead to 
individual predictions (19). Even in the 
simpler Cox model with fixed covari-
ate values, the task of making individ-
ual prediction may be computationally 
expensive (17, 20). Furthermore, it is 
well known that the Cox proportional 
hazards method produces poor results 
with many inputs (21), may suffer from 
multicollinearity of data and may pro-
duce unstable results when continuous 
and dichotomised results are entered 
together in the model (22). Finally, this 
model may not be capable of modelling 
interaction terms when data are scarce 
and dispersed through the multidimen-
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sional space or in presence of non-lin-
ear interactions among variables (23).
Data mining methodologies (18, 24, 
25) are also emerging as useful tools 
for medical researchers to build mod-
els on larger number of variables and 
generate disease predictions. The core 
of these techniques is the ability to find 
patterns and relationships among large 
amounts of data to eventually build 
models that can accomplish the task 
of assigning class label to unlabelled 
instances. The main advantage of data 
mining techniques is the capability of 
discriminating amongst a range of pu-
tative risk factors or causative agents 
and random variance, that is the ability 
of identifying predictive factors in ab-
sence of main independent effects and 
in case of multicollinearity or of non-
linear interactions among variables 
even in relatively small datasets. Data 
mining techniques have, thus, success-
fully been applied in a variety of sur-
vival prediction tasks, including but not 
limited to predicting survival in breast 
cancer patients (26, 27), in cirrhotic 
subjects who underwent transjugular 
intrahepatic portosystemic shunt (TIPS) 
(28) or in critically-ill patients admitted 
to intensive care units (29). 
In this paper, we develop a 5-year 
prognostic model in SSc patients using 
either data mining methods or a tradi-
tional Cox proportional Hazard model. 
The models are developed and internal-
ly validated on the large population of 
SSc patients from our referral centres. 
The generalisation of our model is fi-
nally evaluated on a panel of independ-
ent SSc patients recruited from four ex-
ternal centres.

Materials and methods
Patient selection and 
variables definition
Five hundred and fifty-eight consecu-
tive patients with a diagnosis of SSc 
referred to our outpatient clinic between 
1982 and 2008 were considered for 
analysis. The majority of our patients 
(88%) fulfilled the preliminary criteria 
for the classification of SSc proposed by 
the American college of rheumatology 
(ACR) (30), yet we also considered a 
proportion of patients with definite SSc 
who do not fulfill these criteria (5, 31). 

All the clinical and laboratory vari-
ables were either selected on the basis 
of well-standardised definitions or their 
inclusion was motivated by pre-existing 
medical literature. These variables can 
be roughly divided in variables that do 
not change over time or “time-depend-
ent” variables (e.g. clinical features that 
may develop anytime during the course 
of the illness). In the latter case, if the 
feature was ascertained within one year 
from diagnosis it was considered as 
“present”, otherwise as “absent” even 
if it developed later on. These variables 
are hereafter briefly described.
All causes of deaths related to or pos-
sibly-related to SSc, according to the 
definition of Ferri et al. (5) were con-
sidered. 
The patients were categorised as hav-
ing the limited cutaneous (lcSSc) or the 
diffuse cutaneous (dcSSc) subset of the 
disease, according to LeRoy et al. (32) 
and the patients’ autoantibody profile 
was determined by reviewing the pa-
tients’ medical records. 
Observation was started from the year 
of diagnosis (e.g. referral) and the age 
of 45 at referral was used as a threshold 
to categorise the patients (12). Referral 
delay was defined as the time elapsing 
between diagnosis and the time of the 
appraisal of the first non-Raynaud symp-
tom (33). Restrictive lung disease was 
defined as a forced vital capacity (FVC) 
<70% of predicted values plus a forced 
expiratory volume in 1 second >70% of 
the FVC (6). A severe impairment of the 
diffusing capacity for carbon monoxide 
(DLco) was considered present for val-
ues ≤55% of the predicted (34); DLco 
values were corrected for the patient’s 
haemoglobin concentrations. A right 
ventricular systolic pressure (RVSP) 
≥45 mmHg on echocardiography was 
considered as threshold to estimate the 
presence of pulmonary hypertension 
(35). Renal involvement was defined 
as a serum creatinine >2.5 mg/dL or a 
creatinine clearance <40 mL/min on at 
least two consecutive determinations 
or the presence of “scleroderma renal 
crisis” (6). Gastroesophageal reflux 
disease was defined as the presence of 
heartburn or dysphagia alleviated by the 
use of proton pump inhibitors or anti-H2 
drugs (6). Systemic inflammation was 

defined as the presence of an erythro-
cyte sedimentation rate (ESR) ≥25 mm/
h on at least two consecutive occasions 
without evidence of concurrent infec-
tion (10). Anaemia was ascertained for 
haemoglobin levels <12.5 g/dL (10). 
Digital ulcers were defined as the loss 
of surface epithelialisation (36). Muscle 
weakness, arthralgias or arthritis (5), 
were also considered. 

Statistical analysis
1. Cox regression
We used first univariate Cox regression 
analysis, controlling that the propor-
tionality of hazards was not violated 
(17), to test the different variables for 
their ability to predict mortality at 5 
years from disease onset. P-values 
were adjusted by Bonferroni correc-
tion (pc=p*16) and variables with a 
pc<0.05 were then deemed interesting 
and inserted in a multivariate forward-
stepwise Cox regression model; in this 
model a p-value less than 0.01 was se-
lected as entry criterion at each step. 
The hazard ratios (HR), which can be 
interpreted as the relative risk of dy-
ing due to SSc, are presented with their 
95% confidence intervals (CI95).
We then built a Cox-based classifier 
to make predictions from the Cox pro-
portional hazard model (20). As a first 
step, the mortality probability m(t5) for 
any case at 5 years from diagnosis was 
calculated by the following formula:

m(t5) = 1 - exp [-H0(t10) x (X1B1 + 
X2B2 + ... XnBn)]

where H0(t5) is the baseline cumulative 
hazard at 5 years and Bn are the regres-
sion coefficients for the Xn covariates 
included in the final model. Individual 
m(t5) were then used to build the receiv-
ing operator characteristic (ROC) curve 
(37). If the individual m(t5) was equal 
or fell above a threshold T, as defined 
under point 3.a, the patient was classi-
fied as “dead”, otherwise as “alive”. 
Cox analysis was performed by the 
SPSS ver. 17.0 software (SPSS Inc, 
Chicago, IL).

2. Data mining 
The following trivial rules were applied 
to handle censorship with data mining 
classifiers: patient alive ≥5 years from 
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disease onset were classified as “alive”, 
patients who died within 5 years from 
disease onset were classified as “dead” 
while patients alive but with a disease 
duration <5 years were excluded from 
analysis. Thus, 353 cases were available 
for analysis by data mining classifiers.
We incorporated the following three 
steps in building our data mining based 
model: a) attribute selection; b) com-
parative evaluation of different clas-
sifiers or learning algorithms to select 
one classifier; and c) use of resampling 
techniques to counter the issue of high 
class imbalance in our data. The classi-
fiers are re-learned from the resampled 
datasets to further improve the per-
formance on the SSc survival task. 

2a. Selection of attributes
The selection of the most interesting at-
tributes (or conversely, the removal of 
noisy variables) among a pool of pos-
sible candidates may improve the qual-
ity of the signal, reducing the chance of 
classifier overfitting and increasing its 
overall accuracy (27, 36, 37). 
To filter the dataset, we used informa-
tion-theory based measures, such as 
Gain Ratio, a normalised variant of 
information gain (40). Gain Ratio es-
timates feature weights by examining 
the training data and determines for 
each feature how much information 
it contributes to the knowledge of the 
classes of the training data items. The 
open-source Orange data mining soft-
ware (available at: http://www.ailab.
si/orange) was used to calculate Gain 
Ratios and the top 5 attributes were se-
lected for the further analyses.

2b. Data mining learning algorithms 
The following learning algorithms/data 
mining classifiers were used for analy-
sis: logistic regression models, Naïve 
Bayes classifier (NBC) and Random 
Forests (RND-F). We chose these three 
classifiers as they are each with differ-
ent inductive biases, providing us with 
a broad coverage for evaluation and 
comparison. We used their implemen-
tations in the Orange data mining soft-
ware for all the analyses.
For the NBC, Laplace correction was 
used as smoothing method for estimat-
ing posterior probabilities. In the logis-

tic regression model, the forward step-
wise procedure with p-values equal to 
(0.01) for entry and (0.1) for removal 
was used. For the RND-F, 10 forests of 
500 trees each were built and then the 
forest with the best performance was 
used as the final classifier. Finally, nom-
ograms were used to visualise the NBC 
results and to expose the quantitative 
information on the effect of attribute 
values to class probabilities (39). 

2c. Resampling of the dataset
The natural distribution of data is often 
regarded as non-optimal for learning a 
classifier as it would overestimate the 
importance of the majority class and 
reduce the rate of correct detection in 
the minority class, especially when the 
dataset is highly unbalanced (42). To re-
duce the cost to misclassify the minority 
class we used the wrapper method based 
on the synthetic minority over-sampling 
technique (SMOTE) introduced and 
implemented by Chawla et al. (43-45). 
The wrapper method consists of a com-
bination of under-sampling the major-
ity class and over-sampling the minor-
ity class by creating synthetic minority 
class examples. Undersampling implies 
randomly removing examples from the 
majority class (alive patients). SMOTE 
generates new synthetic examples for 
the minority class (in our case the SSc 
mortality class) to improve the predic-
tive capacity of the classifiers. Generat-
ing new examples provides additional 
information to the classifiers, improv-
ing the overall true positive rate in the 
testing set. While this may also increase 
false positives, our conjecture is that the 
increase in true positives overwhelms 
the relative increase in false positives, 
especially in comparison to the other 
methods, including Cox regression and 
domain expert. The wrapper method 
generated optimal levels of sampling 
(under-sampling and SMOTE) such that 
the performance of each of the three 
classifiers is independently optimised. 
Note that we can optimise this perform-
ance on the data from our referral centre, 
as our real test is on the three external 
centres. Nevertheless, we used different 
internal cross-validation procedure to 
optimise the sampling levels and evalu-
ate the performance of classifiers.

3. Measures for performance 
    evaluation
– 3a Accuracy, sensitivity, specificity 
and ROC curves
The performance of the classifiers was 
evaluated by means of sensitivity, spe-
cificity, accuracy and area under ROC 
curve (AUC) (37). To label the predic-
tion form each classifier, among all the 
possible thresholds T that constitute the 
coordinates of the ROC curves, the val-
ue that resulted in the highest classifi-
cation accuracy was then chosen (37). 
When binary classifiers were finally 
evaluated in the external population 
(see point 3c) T was pre-defined and 
thus we used the balanced accuracy 
(BA) function introduced by Velez et al. 
(46) to establish the trade-off between 
sensitivity and specificity for that given 
T. The BA, -defined as the mathemati-
cal mean of sensitivity and specificity-, 
is an appropriate measure for perform-
ance evaluation in unbalanced datasets 
and it is mathematically equivalent to 
the raw accuracy in datasets with a 1:1 
cases to controls ratio.

3b. Internal cross-validation 
(k-fold cross-validation)   
Internal cross-validation is used to de-
termine how well a learning algorithm 
will fit in independent datasets (47). 
The principles of k-fold cross valida-
tion are here briefly described: the data-
set is divided into k mutually exclusive 
subsets of approximately equal size, 
the learning algorithm is then trained 
on each k-1 subset (the training subset) 
and its prediction are then verified on 
the corresponding k subset (the test-
ing subset). The performance measures 
across all k trials are computed and then 
averaged to determine the performance 
of the k-fold cross-validation. The av-
erage of the performance measure pro-
vides an estimate of the performance 
of the classifier constructed from the 
whole dataset. For the current analysis 
we used the 5 stratified-fold cross-vali-
dation method.
For cross-validation of the SMOTE-
resampled dataset, the original dataset 
was first divided in 5 training and 5 
testing fold and then the training folds 
were resampled. Each training fold was 
independently re-sampled to optimise 
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the performance of a classifier, and 
then the classifier was evaluated on the 
corresponding testing fold. The proce-
dure for this is detailed in Chawla et al. 
(43). The corresponding testing fold 
was never included for optimising the 
levels of sampling. This ensures that 
the reported performance in this paper 
is true “unseen” testing performance 
even for our referral centres data. 

3.c External cross-validation
The predictions of the classifiers were 
tested in an independent population 
which consisted of 356 cases recruited 
from 5 external centres: Rome (FGF), 
23 cases; Legnano (AM), 38 cases; 
Paris (YA), 60 cases; Madrid (PEC), 
105 cases and Nijmegen (MCV and 
DAPD), 130 cases. These cases were 
selected in each centres from consecu-
tive SSc patients and by applying the 
general inclusion criteria and the trivial 
rules described under point 2. 

3d Domain experts 
The predictive ability of the classifier 
with the highest performance after ex-
ternal cross-validation, that is the model 
with the highest reproducibility, was fi-
nally tested by comparison with two do-
main experts (RS, YA) as described by 
Razavi et al. (48). The raw data of the 
cases used for external cross-validation 
were blindly presented to the domain 
experts, and for each case, they were 
asked to rate the probability, from 0 to 
100%, the patient will not be alive after 
5 years from disease onset. Individual 
probabilities were averaged and then 
used to build ROC curves; perform-
ance measures were then calculated as 
described under point 3a. For classifi-
cation purposes, the optimal threshold 
on the ROC curve was derived from the 
survival probability in this population.

Results
Clinical and demographic characteristics 
of the 558 patients referring to our cen-
tres (training population) and of the 356 
patients referring to the external centres 
(testing population) are reported in Ta-
ble I. No statistical differences between 
the populations were observed for most 
clinical parameters, albeit a reduction 
of SSc-specific autoantibodies (ACA or 

Scl70) was observed in the testing popu-
lation. Similarly, mortality was compa-
rable in the two groups of patients.
Univariate analysis sorted out the fol-
lowing variables as relevant to 5-years 
survival: male gender (χ2=17.508, 
pc<0.001); age ≥45 years at disease on-
set (χ2=8.58, pc<0.05); the presence of 
a FVC ≤70% of predicted (χ2=8.186, 
pc<0.05); the presence of a DLco ≤55% 
of predicted (χ2=16.678, pc<0.0001); 
an increased ESR (χ2=13.929, p<0.01); 
the presence of pulmonary hyperten-
sion on echocardiography (χ2=11.949, 
pc<0.05) and the presence of renal in-
volvement (χ2=29.492, pc<0.0001).
The multivariate analysis showed an 
increased mortality risk for the follow-
ing variables: age >45 years at disease 
onset; the male gender; a markedly 
decreased DLco and/or the presence 
of renal involvement (Table II). The 
same variables plus a reduced FVC had 
the highest Gain Ratio after entropy-
based analysis and were used to build 
data-mining classifier-based prediction 
models.

Cross-validation
The performance of the Cox-based 
classifier, along with that of the other 
learning algorithms after internal 5-fold 
cross-validation is reported in Table 
III. All the data mining algorithms had 
higher AUCs than the Cox-based clas-
sifier, either in the unbalanced or in the 
SMOTE-resampled datasets. Resam-
pling improved the performance of the 
NBC and RND-F classifier, increasing 
both AUC and sensitivity, penalising 
only marginally the specificity and the 
overall accuracy. But, improved AUC 
and sensitivity is of a bigger concern 
here, as accuracy is misleading given the 
highly imbalanced nature of the dataset.
The NBC trained on the SMOTE-resa-
mpled dataset ranked first (as for AUC) 
among all the classifiers we built after 
internal cross-validation (Table III), that 
is it was the model that was most likely 
to generalise to independent datasets. 
The capability of generalisation and 
overall predictive ability of this model 
is indeed confirmed after external cross-
validation as illustrated in Table IV.

Table I. Demographics.

Variable Training population* Testing population**  
 (n=558)  (n=356)

Females, n (%) 499 (89.4) 177 (87.8)
dcSSc, n (%) 150 (26.9) 74 (29.5)
Fatalities, n (%) 59 (10.6)§ 36 (10.1)
Age at onset >45 yrs, n (%) 355 (63.3) 224 (62.9)

Autoantiboides, n (%)
ANA 541 (97) 331 (92.9)
ACA 191 (34.2) 104 (29.2)
Scl70 244 (43.7) 115 (32.3)

FVC ≤70% predicted, n(%) 78 (14) 36 (10.1)
DLco ≤55% predicted, n (%) 137 (24.6) 58 (16.3)
Renal involvement, n (%) 24 (4.3) 17 (4.8)
RVSP ≥45 mmHg 5.4 (9.7) 36 (10.1)
Systemic inflammation, n (%) 162 (29) Nr
Oesophageal involvement, n (%) 409 (73.3) Nr
Anemia, n (%) 91 (16.3) Nr
Digital ulcers, n (%) 301 (53.9) Nr
Arthralgias, n (%) 57 (10.2) Nr
Arthritis, n (%) 33 (5.3) Nr
Weakness, n (%) 47 (8.4) Nr

Clinical and demographic characteristics in patients from the Milan centres (training population) 
and in the population pooled from the Rome, the Legnano, the Paris, the Madrid and the Nijmegen 
centres (testing population). *This population includes 203 patients with a disease duration <5 years 
(truncated data); **This population does not include patients with a disease duration <5 years; §At 5 
years, frequency calculated excluding truncated data; Nr, not required for external cross-validation/not 
assessed. dcSSc, diffuse cutaneous subset; ANA, antinuclear antibodies; ACA, anti-centromere anti-
bodies; Scl70, anti-topoisomerase I; FVC, forced vital capacity; DLco, diffusing capacity for carbon 
monoxide; RVSP, right ventricular systolic pressure.
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The performance of the NBC in the 
single testing populations was as fol-
lows: Rome & Legnano, AUC=0.883, 
BA=0.865; Paris, AUC=0.847, BA=0.777; 

Nijmegen, AUC=0.892, BA=0.902; Ma-
drid, AUC=0.836, BA=0.698.
Nomograms for the NBC models built 
on SMOTE-resampled dataset plotted 

in Fig. 2 allow the quantification of the 
relative importance of each variable in 
class prediction. By this graphical tool, 
the predictive ability of the model can 
eventually be tested in any SSc popula-
tion by calculating the scores from each 
individual case and the corresponding 
predicted p-values. Nomograms can 
also allow class prediction when the 
value of a state variable is unknown, 
which is given a neutral value. To as-
sist the reader and to ease the prediction 
from our model, we also provide a sim-
ple calculator which is illustrated in Ap-
pendix and is freely available at: http://
www.nd.edu/~nchawla/survival.xls.

Domain experts
The ROC curve obtained from averag-
ing the predictions from two domain 
experts, blinded to the previous results 
(RS and YA) is plotted in Fig. 2, along 
with the ROC curve of the NBC classi-
fier trained on the SMOTE-resampled 
dataset. On the testing population, the 
NBC clearly outperformed the aver-
aged prediction from the two-domain 
expert (AUC=0.829 vs. AUC=0.787). 
This resulted in a much better trade-off 
between sensitivity and specificity ei-
ther (BA=0.769 for the NBC vs. 0.67 
for domain experts). 

Discussion
Ever since SSc was recognised as one 
of the rheumatic diseases with the worst 
prognosis (2-7), several studies across 
different countries have been conduct-
ed to find the prognostic factors associ-
ated with scleroderma poor outcome (5, 
6, 8-15). These analyses have consist-
ently described an increased mortality-
risk in patients with the dcSSc subset of 
the disease along with any major organ 
involvement, leading to the concept 
that different SSc populations share 
similar prognostic factors and overall 
prognosis. It is nonetheless surprising 
to observe that none of the SSc survival 
studies conducted so far fully answered 
to a simple, yet often neglected, ques-
tion: what is the individual mortality-
risk of a patient when the combina-
tions or the interactions of prognostic 
factors, considered both in term of 
presence and absence, is taken into ac-
count? The models described Bryan 

Table II. Cox regression results.

Variable Alive, Alive, Dead, Dead, B HR  CI95 p-value 
 n  %  n  % 

Age at onset
≤45 years 192 94.6 11 5.4  1 (ref)
>45 years 307 86.5 48 13.5 1.124 3.08 1.59 – 5.97 <0.001
Gender
Females 455 91.2 44 8.8  1 (ref)
Males 44 74.6 15 23.4 1.101 3.01 1.66 – 5.45 0.001
DLco
>55% predicted 391 92.9 30 7.1  1 (ref)
≤55 predicted 108 78.8 29 11.2 0.94 2.56 1.57 – 4.29 <0.001
Renal involvement
No 485 90.8 49 9.2  1 (ref)
Yes 14 58.3 10 41.7 1.483 4.405 2.22 – 8.74 <0.001

Variables associated with poor 5-year survival in our population of systemic sclerosis patients. H0(t5), 
baseline cumulative hazard at 5 years = 0.033; B, regression coefficient. All the other definitions as in 
Table I. Patients are classified as “dead” at 5 years when the estimated mortality probability at 5 years, 
calculated as defined in the text, is ≥0.074. 

Table III. Internal cross-validation. 

Classifier ROC-AUC Accuracy Sensitivity Specificity
COX-based 0.724 ± 0.044 0.851 ± 0.234 0.165 ± 0.123 0.989 ± 0.168

Logistic regression
Original 0.747 ± 0.111 0.844 ± 0.019 0.218 ± 0.06 0.969 ± 0.022 
SMOTE  0.754 ± 0.091 0.793 ± 0.038 0.508 ± 0.195 0.85 ± 0.057
Naïve Bayes
Original 0.75 ± 0.111 0.839 ± 0.012 0.216 ± 0.083 0.936 ± 0.022 
SMOTE 0.759 ± 0.101 0.782 ± 0.046 0.626 ± 0.175 0.813 ± 0.028
Random Forest
Original 0.732 ± 0.079 0.838 ± 0.01 0.084 ± 0.096 0.989 ± 0.017 
SMOTE  0.736 ± 0.005 0.765 ± 0.008 0.539 ± 0.016 0.809 ± 0.011

Performance of the different classifiers after internal 5-fold cross-validation either on the original or 
on the synthetic minority oversample technique (SMOTE)-resampled datasets. ROC-AUC, area under 
receiving operator characteristics curve. Values expressed as mean ± standard deviation of 5 cross-vali-
dations; for the Random Forests, values are the average of 5 cross-validations run on 10 forests with 10 
different random seeds. The best model that maximises the ROC-AUC is indicated in italicface type.

Table IV. External cross-validation.

Classifier Accuracy Balanced accuracy Sensitivity Specificity

COX-based 0.874 0.622 0.305 0.936
Logistic regression
Original 0.888 0.592 0.222  0.963
SMOTE 0.803 0.755 0.694 0.816
Naïve Bayes
Original 0.888 0.592 0.222  0.963
SMOTE 0.777 0.769 0.722 0.816
Random Forest
Original 0.883 ± 0.008 0.547 ± 0.007 0.128 ± 0.025 0.967 ± 0.001 
SMOTE  0.788 ± 0.002 0.751 ± 0.008 0.705 ± 0.002 0.797 ± 0.00

Performance of the different classifiers trained either on the original or on the synthetic minority over-
sample technique (SMOTE)-resampled datasets after external cross-validation in 356 cases. The best 
Model that maximises the balanced accuracy is indicated in italic face type.
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et al. (13) and by Scussel-Lonzetti et 
al. (10), do represent a first tentative 
in this direction, yet ultimately fail to 
solve this important issue. The finding 
that, in absence of an internal valida-
tion method, by increasing the number 

of predictors the expected mortality 
increases, does not add any clue about 
the way these variables interact and 
would represent a clear case of adap-
tion of the model to the data (overfit-
ting) (49). Thus, the significance of the 

reported results may be overestimated 
and misleading, as well as difficult to 
interpreter. If, for instance, we consider 
the model proposed Scussel-Lonzetti 
et al. (10), which identified older age, 
anemia, inflammation, an impaired 
DLco and the dcSSc subset as predic-
tors, we cannot conclude anything but 
that aged patients with anemia have the 
very same mortality risk of dcSSc pa-
tients with lung involvement, even if it 
seems unlikely. 
The prevalence of organ involvement 
in our population is largely comparable 
to the testing population and to other 
case-series (8, 10), including a large 
meta-analysis conducted in 1645 SSc 
patients (6). Accordingly, the prognos-
tic factors we sorted out do not differ 
much from those described in previ-
ous reports, yet compared to previous 
reports, our model allows a better use 
of the available information. Given 
the inherent probabilistic nature of the 
NBC, instead of attributing a generic 
risk-pattern to individuals on the ba-
sis of the single clinical characteristics 
of theirs (i.e. males have a 3-fold re-
duced survival compared to females), 
we can calculate for each patient a 
precise survival probability that can be 
transformed into a yes/no answer to the 
question: “will the patient survive after 
5-years from diagnosis?”. One of the 
main advantages of Bayesian classifi-
ers is that they are robust to real data 
noise and missing values and that they 
perform efficiently well when the sam-
ple size is small. This resulted in a con-
sistent 5-year survival prediction, that 
is a better balance between sensitivity 
and specificity compared to the other 
statistical approaches we employed, 
including Cox regression (Tables III 
and IV). 
Whilst the development of our prognos-
tic model may seem quite sophisticated 
and complex, its practical use is sur-
prisingly simple. Nomograms depicted 
in Fig. 1, illustrate how it possible to 
calculate individual survival probabili-
ties on the basis of the clinical charac-
teristics of a patient also in presence of 
missing values (see also Appendix for a 
description of an excel-based prognos-
tic calculator). Noteworthy, our model 
was both internally validated and tested 

Fig. 1. Nomogram for the NBC. Individual point scores and corresponding posterior probability cal-
culated from the naïve Bayes classifier trained on the dataset resampled by the Synthetic Minority 
Oversample Technique. To make a prediction, the contribution of each attribute is measured as a point 
score (topmost axis in the nomogram), and the individual point scores are summed to determine the 
probability of survival (bottom two axes of the nomogram). Patients with overall p-values ≥0.588, are 
classified as “dead” after 5 years from diagnosis, otherwise as “alive”. The dots indicate the charac-
teristics of an example male patient who aged <45 years at onset, without renal involvement a forced 
vital capacity (FVC) ≥70% of predicted values and a diffusing capacity for carbon monoxide ≤55% of 
predicted values. The posterior probability to be dead at 5 years from disease onset is calculated to be 
0.46 (score=0.13) and hence the patient is predicted to be alive. 

Fig. 2. Performance com-
parison of domain experts 
and NBC 
Receiving operator charac-
teristic (ROC) curve in the 
testing population plotted 
considering either the aver-
aged predictions from two 
domain experts (dotted line) 
or the predictions from the 
naïve Bayes classifier (NBC) 
trained on the resampled da-
taset (black line). NBC area 
under curve (AUC)=0.829; 
domain experts AUC=0.788. 
The square point indicates 
the optimal threshold for 
the NBC derived from the 
training population; the cir-
cle indicates the threshold 
for domain experts derived 
from the observed mortality 
(=10.1%).
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on an independent external population, 
confirming the robustness and capabil-
ity of generalisation of the provided 
predictions. Yet, as with any computa-
tional tool used in problem-solving, the 
ultimate goal of decision makers is to 
reduce uncertainty and to outperform 
their counterparts, embodied in human 
and domain experts, that is those per-
sons who possess special knowledge or 
skill in the field. Indeed, our model ap-
peared to be more robust than humans 
in its ability to objectively analyse pa-
tients’ data and to reach unbiased con-
clusions. Compared to the clinicians’ 
predictions, the NBC model had a much 
higher sensitivity (0.722 vs. 0.556) as 
well as a higher specificity (0.816 vs. 
0.784). From a practical point of view, 
the improved ability of our model to 
discriminate patients at risk, otherwise 
dampened by over-optimism by health 
professionals, may facilitate better pa-
tient care and treatment. Furthermore, 
it has been observed that both patients 
and their families may later regret be-
ing over-optimistic about their progno-
sis (48) and that patients are willing to 
have access to accurate prognostic in-
formation (49).
In the evaluation of our prognostic mod-
el its inherent “static” nature should be 
carefully considered. Due to inclusion/
exclusion criteria and variables defi-
nition, this model do not take into ac-
count the evolution of the disease, that 
is, it is assumed that during the first 5 
years of the disease the mortality risk 
for a given patient is linear given the 
“early” (e.g. within the 1st year from di-
agnosis) clinical characteristics of his. 
Furthermore, it is assumed that both 
in the training and testing centres the 
optimal therapy based on the current 
practice is prescribed (52). 
I summary, we described a framework 
to build a prognostic model to predict 
5-year mortality in SSc patients by data 
mining algorithms and we demonstrat-
ed, for the first time, that it is possible 
to make accurate individual predic-
tions. The advantages of the model we 
created include its logical simplicity, 
its biological plausibility as well as its 
capability of generalisation and appli-
cability that would ultimately support 
its diffusion in the clinical practice.
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There are three main features:
-The clinical characteristics of the patient to be used to make the prediction (topmost left)
-The prediction (mid left)
-The performance of the prediction as assessed in a population of 356 SSc patients recruited from France (60 cases), Spain (105 
cases), the Netherlands (130 cases) and Italy (61 cases) (graph on the right and bottom left). The square on the graph indicates the 
optimal threshold as determined by the analysis conducted on 558 Italian subjects. 

APPENDIX

This section illustrates the use of a simple prognostic calculator in Excel format, to predict 5-year survival (from diagnosis) in SSc 
patients. Follow the steps below to download and use the calculator

Step 1.
Download the calculator from the site: 
http://www.nd.edu/~nchawla/survival.xls 

Step 2.
Open the calculator, the following screenshot will appear:
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Step 3.
Choose the desired value from the scroll-down menu:

Step 4.
The estimated 5-year survival probability is displayed in Cells B14 or C14 and changes whenever a selection is made in Step 3.


