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ABSTRACT
Objectives. To evaluate an improved 
quantitative lung fibrosis score based 
on a computer-aided diagnosis (CAD) 
system that classifies CT pixels with 
the visual semi-quantitative pulmonary 
fibrosis score in patients with sclero-
derma-related interstitial lung disease 
(SSc-ILD).
Methods. High-resolution, thin-sec-
tion CT images were obtained and ana-
lysed on 129 subjects with SSc-ILD (36 
men, 93 women; mean age 48.8±12.1 
years) who underwent baseline CT in 
the prone position at full inspiration. 
The CAD system segmented each lung 
of each patient into 3 zones. A quan-
titative lung fibrosis (QLF) score was 
established via 5 steps: 1) images were 
denoised; 2) images were grid sampled; 
3) the characteristics of grid intensities 
were converted into texture features; 
4) texture features classified pixels as 
fibrotic or non-fibrotic, with fibrosis 
defined by a reticular pattern with ar-
chitectural distortion; and 5) fibrotic 
pixels were reported as percentages. 
Quantitative scores were obtained from 
709 zones with complete data and then 
compared with ordinal scores from two 
independent expert radiologists. ROC 
curve analyses were used to measure 
performance.
Results. When the two radiologists 
agreed that fibrosis affected more than 
1% or 25% of a zone or zones, the ar-
eas under the ROC curves for QLF 
score were 0.86 and 0.96, respectively.
Conclusion. Our technique exhibited 
good accuracy for detecting fibrosis at 
a threshold of both 1% (i.e. presence 
or absence of pulmonary fibrosis) and 
a clinically meaningful threshold of 
25% extent of fibrosis in patients with 
SSc-ILD.

Introduction 
Scleroderma lung disease is the leading 

cause of death in patients with sclero-
derma (1-2). A recent study has sug-
gested that an important predictor of 
survival is the extent of disease and ex-
tent of reticular pattern, which are visu-
ally scored on computer tomography 
(CT) (3-4). In another study, the visual 
score of pulmonary fibrosis, which 
was defined as reticular opacities with 
architectural distortion (i.e. traction 
bronchiectasis and bronchiolectasis) 
(5), alone was shown to be predictive 
of the therapeutic response to cyclo-
phosphamide (6-7). CT is important in 
detecting and quantifying interstitial 
lung disease (ILD) in the management 
of scleroderma patients (8). 
Visual scoring systems are limited by 
intra- and inter-reader variations (9-
11). Development of a computer-based 
scoring system offers the potential for 
both reducing reader variation and 
standardising data across multiple sites. 
Though quantitative scoring of other 
lung diseases, such as emphysema, has 
been achieved (12, 13), several compu-
ter-aided diagnosis (CAD)-based sys-
tems that have been developed for as-
sessing ILD or obstructive lung disease 
using texture features have not been 
applied in studies of large numbers of 
subjects (14-18). These methods have 
the potential to provide a score for ab-
normal patterns with respect to the ex-
tent of whole lung involvement, which 
can be beneficial for research applica-
tions and for facilitating clinical care 
(3-4, 6-8, 11, 19). 
Development of an effective classi-
fier model that accurately detects and 
grades fibrosis in whole lung imaging 
faces mainly two challenges. To date, 
most computer-generated texture fea-
tures have used only small areas of 
lung to categorise ILD patterns (14-
18). When applied to the whole lung, 
the computer-based model depending 
upon the intensities of pixels tends to 
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misclassify anatomical structures such 
as airways, fissures, and vessels or 
lung abnormalities into ground glass 
opacity or pulmonary fibrosis or other 
abnormalities. Another challenge is to 
obtain the sufficient image data with 
semi-quantitative scoring by expert ra-
diologists for evaluation of whole lung 
fibrosis. 
This paper reports the development 
of an automated fibrosis classifier and 
quantitative scoring system in whole 
lung imaging, which is then evaluated 
by comparison with semi-quantitative 
visual CT-based lung fibrosis scoring 
by expert radiologists in patients with 
scleroderma ILD.

Materials and methods
Patient selection
The Scleroderma Lung Study (SLS) 
was a multicentre NIH-sponsored ran-
domised controlled trial comparing 
cyclophosphamide with placebo. The 
study was conducted between Sep-
tember 2000 and June 2006, involv-
ing 13 clinical centres throughout the 
United States (NCT 000004563, U01 
HL60587-01A1, for detail, see Tashkin 
et al. (6), R01 HL072424). The use of 
anonymous image data from the clini-
cal trial was approved by each local in-
stitutional review board. Briefly, base-
line thoracic high-resolution (HR) CT 
was used to scan patients in the prone 
position at total lung capacity (TLC). 
Of these 158 randomised patients, 129 
were analysed (Fig. 1, Table I). CT im-
aging of 29 patients could not be eval-
uated due to supine positioning (n=2), 
performance of CT scans outside of the 
protocol for routine clinical assessment 
(n=8), arms at side (n=1), 5mm-colli-
mation (n=1), motion artifact and com-
promised image quality (n=2), or non-
digitised format of CT images (n=15). 
Lung segmentation was of diagnostic 
quality in all evaluable cases. CT imag-
es were acquired from 4 manufacturers 
(Elscint, Haifa, Israel; General Electric, 
Milwaukee, USA; Picker International 
Inc., Highland Heights, USA; Siemens, 
Munich, Germany). The radiation ex-
posure parameters ranged from 80 to 
380mAs (mean of 245mAs±79) and 
the peak tube current potentials ranged 
from 120 to 140kVp. Non-volumetric 

CT scans of 1–2 mm slice thickness 
were acquired at 10mm increments 
and were typically reconstructed with 
sharp or over-enhancing reconstruction 
filters. 

Semi-quantitative lung fibrosis score
As part of visual assessment in SLS 
that has been published previously, two 
SLS thoracic radiologists (DAL and 
DCS) with 21 and 16 years experience 
assessed the CTs for extent of pure 
ground glass opacity (pGGO), pulmo-

nary fibrosis (PF), honeycomb cysts 
(HC), and emphysema (6, 7). In this 
study, we only emphasise evaluation 
of PF using the CAD system for rea-
sons listed below. In the visual assess-
ment, each of interstitial lung disease 
component was scored using Likert 
scale semi-quantitative scores, ranging 
0–4 (0=absent, 1=1–25%, 2=26–50%, 
3=51–75%, and 4=76–100% extent of 
involvement) in three lung zones (up-
per, middle and lower) in a blinded 
fashion (20) (for detail, see Tashkin et 

Fig. 1.  
Flow chart of 
patients

Table I. Patient characteristics.

n=129 Mean (SD) Range

Age, yrs 48.8 (12.1) 22.3–83.1
Female sex (% of patients) 93 (72.1%) 
Duration of scleroderma, yrs   3.0 (2.1) 0.05–12.0
FVC (% of predicted) 68.3 (11.8) 29.4–90.5
FEV1/FVC (%)* 83.2 (6.8) 61.0–99.0
Total lung capacity (% of predicted)# 69.5 (13.2)    24.0–100.0
Residual volume (% predicted)# 69.0 (25.9) 9.0–166.0
DLCO (% of predicted) 46.6 (14.0) 17.0–100.0
Cough, n. (% of patients)## 88 (70.4%) 
Focal score for the Mahler Dyspnea Index+  5. (1.8) 0–10.0
Skin-thickening score** 14.2 (10.5) 0–45

*n=126, #n=127, ##n=125, +n=122, **n=128; for all other characteristics, n=129.
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al. (6) and Goldin et al. (7)). The upper 
zones covered the apices to the aortic 
arch, the middle zone spanned from the 
aortic arch to the pulmonary veins, and 
the lower zone started at or below the 
pulmonary veins. As subjects from one 
site (n=27) were only scanned below 
the carina, the upper zones in these cas-
es were not evaluated. Zones degraded 
by breathing artifact or limited image 
quality were not scored. 
We focused on PF (i.e. reticular pat-
tern with architectural distortion) in 
whole lung evaluation for the follow-
ing reasons: 1) Good agreement for the 
presence or absence of visually scored 
PF had been found between the expert 
readers (7) whose scores were used 
in the present study for evaluation of 
the computer-based scoring system; 
2) only very few cases of emphysema 
(1.2%) were visually noted by either 
reader; 3) only fair interobserver agree-
ment for visually scored HC was noted, 
thus failing to provide a good “truth” 
for CAD evaluation; and 4) poor inter-
reader agreement was found between 
pGGO and GGO with or without as-
sociated PF (so-called “any GGO”, an 
eligibility criterion for the SLS), thus 
again making it difficult to establish 
“truth” for the computer-assisted clas-
sification where CAD GGO indicates 
any GGO. Semi-quantitative fibrosis 
(semi-QLF) score was defined as each 
radiologist’s visual PF score using a 
5-point Likert scale when both radi-
ologists registered non-missing scores. 
Zones from six participants were par-
tially excluded (i.e. not scored by at 
least one radiologist) due to nondiag-
nostic images in the upper zones (n=3), 
right middle zone (n=2), or remaining 
three zones (n=1) (Table II).

Small regions of data for 
CAD whole lung development
To effectively apply a PF classifica-
tion from small regions of interest to 
the whole lung, we included normal 
anatomical structures from the LIDC 
in the classifier training and test data 
sets. The training set for the classifica-
tion model was composed of 52 CTs: 
baseline CTs from consecutive SLS pa-
tients (n=38) and CTs from randomly 
selected patients from the Lung Image 

Database Consortium (LIDC) (n=14). 
From the SLS patients, 148 regions of 
interest (ROIs) exhibited classic, ho-
mogeneous and unambiguous features 
of scleroderma lung disease patterns 
and normal lung parenchyma, which 
were contoured by another thoracic 

radiologist (JGG, 12 years experi-
ence) (18). Regions included 46 PF, 
85 GGO, 4 HC, and 13 normal lung 
(NL) patterns. From the LIDC data set, 
markings from 74 ROIs were used to 
delineate PF and other abnormalities 
from anatomical components in non-

Table II. Summary statistics of marginal distributions of visual semi-Quantitative Lung 
Fibrosis (QLF) scores and Computer-Aided Diagnosis (CAD) QLF scores.
  

Statistics
 

Zone  Likert Scale of Reader 1 Reader2          CAD QLF Scores 
(Total n=129) fibrosis Score  semi-QLF  semi-QLF 
  Scores Scores
  n n n Mean ± SD  (min, max)

Right Upper 0 =      <1% 60 34 31 0.53 ± 0.26 (0.10,   0.99)
 1 = (1-25%) 39 55  65  4.76 ± 4.68 (1.00,  23.82)
 2 = (26-50%)  0 10 3 35.20 ± 3.10 (33.15, 38.77)
 3 = (51-75%)  0   0 0  NA NA
 4 = (76-100%) 0   0  0  NA NA
 missing* 30 30  30  NA NA 
 
Right Middle 0 =      <1% 44 33 23 0.60 ± 0.24 (0.20,  0.99)
 1 = (1-25%) 70 64 97 5.87 ± 4.52 (1.04, 20.90)
 2 = (26-50%) 12 26  7 36.54 ± 6.96 (28.48, 45.50)
 3 = (51-75%) 1 4  0  NA NA
 4 = (76-100%)  0 0  0                  NA  NA
 missing 2 2 2  NA NA
 
Right Lower 0 =      <1% 22 16 12 0.56 ± 0.31 (0.11,  0.98)
 1 = (1-25%) 56 32 72 10.92 ± 7.57 (1.04, 25.47)
 2 = (26-50%) 31 31 32 36.51 ± 6.88 (25.95, 48.91)
 3 = (51-75%) 17 43 9 64.24 ± 4.69 (56.92, 69.72) 
 4 = (76-100%)  2  6 3 81.40 ± 6.76 (76.68, 89.15)
 missing 1 1  1  NA NA
 
Left Upper 0 =      <1% 58 36 40 0.49 ± 0.28 (0.00,    0.93)
 1 = (1-25%) 41 53 57 4.49 ± 3.42 (1.10,  18.17)
 2 = (26-50%) 0 10 1 30.12 ± . (30.12, 30.12)
 3 = (51-75%) 0 0 1 54.18 ± . (54.18, 54.18) 
 4 = (76-100%) 0 0 0  NA NA
 missing* 30 30  30  NA NA
 
Left Middle 0 =      <1% 41 36 11 0.63 ± 0.28 (0.00,    0.99)
 1 = (1-25%) 80 63 111 6.59 ± 5.01 (1.02,  24.85)
 2 = (26-50%) 7 26 5 31.93 ± 5.50 (26.21, 40.18)
 3 = (51-75%) 0 3 1 63.07 ± . (63.07, 63.07)
 4 = (76-100%) 0 0 0  NA NA
 missing 1 1   1  NA NA
 
Left Lower 0 =      <1% 22 13 5 0.50 ± 0.31 (0.00,    0.84)
 1 = (1-25%) 52 31 81 12.02 ± 7.73 (1.21,   25.00)
 2 = (26-50%) 35 35 24 37.64 ± 6.99 (27.96, 49.21) 
 3 = (51-75%) 19 42 15 59.20 ± 5.46 (51.83, 67.99) 
 4 = (76-100%) 0 7 3 82.84 ± 3.05 (79.39, 85.17)
 missing 1 1   1  NA NA
 
total 0 =      <1% 247 168 122 0.54 ± 0.27 (0.00,   0.99)
 1 = (1-25%) 338 298 483 7.51 ± 6.36 (1.00,  25.47)
 2 = (26-50%) 85 138 72 36.43 ± 6.72 (25.95, 49.21)
 3 = (51-75%) 37 92 26 60.90 ± 5.61 (51.83, 69.72)
 4 = (76-100%) 2 13 6   82.12 ± 4.76  (76.68, 89.15)
 All 709 709 709 11.84 ± 16.12 (0.00,   89.15) 
 missing 65 65 65  NA NA

*Total n=99; 27 subjects were scanned at carina and below instead of whole lung, 3 subjects were 
scored as missing at least by one radiologist due to breathing artifact and poor image quality. 
NA: not applicable.
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volumetric scans (21). The markings 
of each patient were chosen with the 
minimum distance of 3 slices. Regions 
from 15 airways (1st to 6th generation), 
15 major fissures, 14 minor fissures and 
30 vessels (hilum to peripheral) were 
included as NL (disease free). For as-
sessing the classification ability of the 
model built on the training set, the test 
set was composed of 199 ROIs from 
47 patients using identical criteria: 132 
contoured ROIs from 33 independent 
SLS participants and 67 marked ROIs 
from 14 independent LIDC test set sub-
jects. Test regions included 44 PF, 72 
GGO, 4 HC, and 12 NL patterns, in ad-
dition to 67 NL regions that included 
14 airways, 14 major fissures, 13 minor 
fissures, 13 hilar large vessels, and 13 
small lung vessels. 

CT image analysis and CAD 
classification model
– Development of a fibrosis classifier         

for whole lung using small ROI
In our upgraded classification model, 
we included the robust texture features 
extracted from cleaned images, oracle 
features selection, and a support vector 
machine (SVM) with few assumptions 
on data distribution and dependency 
(18, 22-25). Oracle feature selection 
was used to avoid over fitting by max-
imising a penalised likelihood function. 
The non-concave penalised likelihood 
function was composed of two parts: a 
regular likelihood function and a pen-
alty function for adding the number 
of features. Logistic likelihood was 
used with NL as the reference group 
and smoothly clipped absolute devia-
tion (SCAD) as the penalty function 
(22). Matlab, Version 7.3.0. (R2006b) 
was used. The model was extended 
for application to the entire lung field 
by including features from anatomical 
structures from the LIDC in the clas-
sifier training and test data sets. In the 
small ROI test set, classification of PF 
by CAD yielded 94.4% sensitivity and 
94.7% specificity (Of note additional 
classifying model of PF including HC, 
“any” GGO, and all types of patterns 
in interstitial lung disease yielded sen-
sitivities of 95.1%, 82.4%, and 95.3% 
and specificities of 96.8%, 98.0%, and 
96.9%, respectively). 

Procedure for automated quantitative 
Fibrosis (QLF) scoring in whole lung 
A semi-automated 3D lung segmenta-
tion program was applied (26), and the 
automated QLF scoring was run, con-
sisting of the following steps: 
1 Cleaning (De-noising) the CT im-

age. To reduce variation of texture 
features across different scanners, 
Gilles’ and Aujol’s de-noise algo-
rithm (23, 24) was implemented 
with the noise parameter based on 
the standard deviation (SD) of the 
aorta (18). Details of the algorithm 
are given in Appendix 1 and 2. 

2 Sampling each pixel from a 4-by-4 
grid within segmented lung.

3 Calculating the texture features from 
de-noised CT image for the sampled 
pixel (27, 28). 

4 Integrating database with the previ-
ously built SVM classifier to predict 
PF using the same selected texture 
features. Features from Step (3) 
were used to predict PF or non-PF 
(i.e. NL, GGO and/or HC) by built-
in classifier using SVM from R 
software version 2.2.1(The R Foun-
dation for Statistical Computing, 
Vienna, Austria) with connecting an 

image work station.  This integra-
tion between this classifier from R 
software to the image work station 
(JAVA language) was a key factor 
for the automated score.

5 Calculating the PF score percent-
age by zones. For comparison with 
semi-QLF zonal scores, we used the 
z-axis of the pixel location to regis-
ter upper, middle, and lower zones. 
One-third of the total number of slic-
es (i.e. maximum of z-axis – mini-
mum of z-axis +1) were mapped to 
the upper, middle, and lower zones, 
respectively. When the upper zone 
data were not available, half of the 
total number of slices was mapped 
to middle and lower zones, respec-
tively. The formula is below:

    QLF =     Counts of classified PF 

        Total Counts of Grid Sample

We used the five steps indicated in Fig-
ure 2 to develop an automated QLF 
score (Fig. 2). 
 
Statistical analysis
Means (±SD) of QLF scores and counts 
of semi-QLF scores by each radiolo-
gist for each lung zone were reported. 

Fig. 2.  Procedure for Automated Development of Computer-Aided Diagnosis (CAD) Quantitative 
Lung Fibrosis (QLF) Score.
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Spearman rank correlations were used 
to compare continuous QLF scores and 
semi-QLF scores of the three zones 
in each lung. The linear mixed effects 
model was used to accommodate the 
dependency from six zones per subject 
in the comparison of QLF scores with 
semi-QLF scores (Appendix 3). In a 
sensitivity analysis, the Kappa (κ) sta-
tistics between two radiologists’ semi-
QLF scores were estimated to find the 
threshold in which the best agreement 
(highest kappa) was seen. This thresh-
old was then chosen to evaluate CAD 
QLF scores. Receiver operating curve 
(ROC) analyses were also performed on 
the most agreed-on score categories by 
the two radiologists. We did the same 
analysis for the proposed clinically 
meaningful threshold of >25% (3-4). 
For determination of statistical signifi-
cance, we took into account the poten-
tial intra-dependency of scores from the 
six different zones in each patient (29). 
Kendall’s correlations between QLF 
score and PFT, physiological score, 
symptom scores were performed. Stata 
V.10.0 (College Station, Texas 77845 
USA) and R Version 2.2.1 (The R Foun-
dation for Statistical Computing, Vien-
na, Austria) were used for this analysis. 

Results 
Lung fibrosis scores from 
two readers vs. CAD
The counts of semi-QLF scores by 
Likert scale from 0 to 4 were recorded 
within each zone (Table II). High Lik-
ert scores found in lower zones com-
pared with upper zone, indicating mod-
erate and severe extent of PF were lo-
cated in lower zones. In the right upper 
zone, the number of zones in which the 
semi-QLF scores were zero were 60 for 
Reader One, and 34 for Reader Two, 
respectively, whereas the number of 
zones that had QLF scores <1% were 
31 by CAD. The overall means (SD) of 
the two readers’ semi-QLF scores us-
ing the Likert scale were 0.93 (±0.86) 
and 1.27 (±1.03), and the mean QLF 
score by CAD was 11.84% (±16.12). 
Figure 3 shows the box plots of QLF 
CAD scores by the visual Likert scores 
only in the cases for which the two radi-
ologists agreed. The QLF scoring sys-
temis sensitive for detecting PF when 

the semi-QLF scores are either zero or 
1 (i.e. range of 0–25%), but relatively 
underestimate PF when the semi-QLF 
scores are ≥2. Of 146 zones with 0 on 
the Likert scale (i.e. no or <1% PF), the 
median QLF score was 1.25%, indicat-
ing that more than half of 146 zones 
had greater QLF scores than 1%. Of 
55 zones with ≥2 on the Likert scale, 
the majority of QLF scores were lower 
than the corresponding range. When 
the visual semi-QLF scores were 2 (i.e. 
range of 26–50%), the mean (SD) CAD 
QLF scores were 19.0% (±13.6). The 
association between QLF scores and 
visual semi-QLF scores was significant 
(p<0.001) based on the model fit of the 
linear mixed effects model.

Correlations between CAD and 
each of the two readers by zones
The Spearman rank correlations were 
determined for each of the 6 zones 

between QLF scores and each of the 
reader’s semi-QLF scores (Table III). 
Correlations between readers (0.54 to 
0.67) and between each of the readers 
and the QLF scores (0.28 to 0.61 and 
0.50 to 0.71) were comparable and sig-
nificant (all eighteen p-values <0.002). 

Evaluation 
At the 1% threshold, substantial and 
moderate agreement occurred in all 
six zones between the two radiolo-
gists (bootstrap κ=0.59, 95% CI=(0.52, 
0.65)), whereas slightly less agreement 
occurred at the 25 % threshold (boot-
strap κ=0.49, 95% CI=(0.43, 0.56)). 
Agreement between the two radiolo-
gists in semi-QLF scoring decreased 
progressively with an increase in 
the threshold from 1% to 75%. ROC 
analyses were performed both for the 
threshold with the best agreement (1% 
or above 1%), and for the clinically 

Fig. 3. Box-plot of 
Quantitative Lung 
Fibrosis (QLF) 
Scores (%) over 
visual scores using 
only the agreed-on 
scores by both ra-
diologists (n=399 
zones).

Table III. Correlation between semi-Quantitative Lung fibrosis (QLF) scores by readers 
and Computer-Aided Diagnosis (CAD) QLF scores.

 Spearman rank correlations
 
Zone Between two  CAD QLF score &  CAD QLF score &  
 readers’ scores  Reader One’s score Reader Two’s score

Right Upper 0.62 (p<0.0001) 0.55 (p<0.0001) 0.54 (p<0.0001)
Right Middle 0.66 (p<0.0001) 0.53 (p<.0001) 0.58 (p<.0001)
Right Lower 0.67 (p<0.0001) 0.61 (p<.0001) 0.71 (p<.0001)
Left Upper 0.58 (p<0.0001) 0.45 (p<.0001) 0.50 (p<.0001)
Left Middle 0.54 (p<.0001) 0.28 (p=0.0012) 0.53  (p<.0001)
Left Lower 0.65 (p<0.0001) 0.50 (p<0.0001) 0.69 (p<0.0001)
Average of 0.62  0.49  0.60 
   correlation 

n=129 subjects.



S-31

CAD for quantitative lung fibrosis score in SSc-ILD / H.J. Kim et al.

meaningful threshold for PF (above 
25%) (3-4). AUC is depicted by defin-
ing “truth” from the interpretation of 
each of the two radiologists and by as-
sessing only agreed-on cases by the two 
radiologists using these two thresholds 
(Table IV). For the 1% threshold, the 
AUCs were 0.80 and 0.83 for each of 
the two radiologists and 0.86 for the 
agreed-on cases; for the 25% thresh-
old, the AUCs were 0.90 and 0.91 for 
each of the radiologists, and 0.96 for 
the agreed-on cases. The ROC plot for 
agreed-on cases shows an AUC of 0.86 
for the 1% threshold (i.e. visual score 
≥1) and an AUC of 0.96 for the 25% 
threshold (i.e. visual score ≥2) (Fig. 4). 
The QLF scores showed good agree-
ment with the corresponding HRCT 
images in most of cases (Fig. 5 A-B:
visual score of 1=QLF score near 5%, 
Fig. C-D: visual score of 2=QLF score 
near 30%), but in a few cases the QLF 
scores varied from being higher than 
the visual semi-QLF scores in mild PF, 
and lower than the semi-QLF scores 
in moderate to severe PF (Fig. 5 E-F: 
visual score of 0 vs. QLF near 5%, Fig. 
G-H contains streak artifact: visual 
score of 0 vs. QLF near 5%, and Fig. I-
J: outlying disagreed case, visual score 
of 2 vs. QLF near 5%, respectively). 
Several outlying zones (10/146), which 
were scored by both radiologists as zero 
(meaning non-PF lung) were registered 
as minimal PF by the QLF scoring sys-
tem (Fig. 3, Fig. 5 E-F, and G-H). 

Correlations between CAD and 
pulmonary function test, other 
physiological measurements
Significant inverse associations were 
found between severity of whole lung 
CAD QLF and pulmonary function 
measurements of FVC (-0.31; p<0.001), 
TLC (-0.34; p<0.001), RV (-0.22; 
p=0.0003), DLCO (-0.35; p<0.0001), 
and FEV1 (-0.23, p=0.0001).  Severity 
of cough and frequency of cough were 
associated positively with severity of 
QLF score (0.22; p=0.0017) and (0.19, 
p=0.02), respectively, as well as with 
dyspnea in the domains of magnitude 
of task (0.16; p=0.02) and magnitude 
of effort (0.17; p=0.01). Insignificant 
correlations were found between skin 
score and the Health Assessment Ques-

tionnaire and whole lung CAD QLF 
score. 

Discussion 
We have shown that automated CAD-
based scoring systems of PF can be de-
veloped using data from a multicenter 
clinical trial to assess the whole lung 
rather than limited regions of the lung 
and that QLF scoring has high discern-
ing ability for detection of PF, as well 
as for the recently proposed clinically 
meaningful threshold of 25% (0.96 
AUC) for predicting mortality (3). 
The present work evaluates PF quan-
tification of the entire lung rather than 
smaller regions described in previous 
systems (18). In this study, we extend-
ed the previous classification model by 
including vessel, fissures, and airways 
and implementing a novel classification 
model within the CAD system. More-
over, with visual scores of whole lung 
from two independent expert radiolo-
gists, who had not served for contour-
ing small regions of interests as part of 
developing CAD model, we evaluated 
the agreement of the findings from the 
CAD-based scoring system in a large 
number of participants from the Scle-
roderma Lung Study. 

The CAD system of whole lungs in-
volves two major processes to detect 
and quantify abnormalities. Detection 
is based on pixel classification from a 
methodological model, while the quan-
tification is a simple but powerful book-
keeping operation that assesses large 
image data sets. The visual detection 
rate for lung pathology increases with 
knowledge and experience, whereas 
CAD can improve this rate as soon as 
it is applied. Concerning quantifica-
tion, visual quantification is associated 
with intra- and inter-observer variation, 
especially in non-cubical or non-ellip-
soidal topology, such as the thoracic 
cage. The scoring of pulmonary fibro-
sis has been hampered by intra- and in-
ter-reader variation (9-10). When CAD 
is applied in well-segmented lung re-
gions and is developed with input from 
experienced radiologists, “truth” may 
significantly improve CAD’s ability to 
classify and quantify the extent of in-
terstitial lung disease. 
Quantification of whole-lung fibrosis 
faces challenges in both the develop-
ment and evaluation of a classification 
model. Most regions in the training set 
were constructed from well-defined 
lung regions. In contrast, evaluation 

Table IV. Area Under Curve (AUC) from ROC analysis of visual semi-Quantitative Lung 
fibrosis (QLF) Score on CAD QLF score.

Threshold of semi-QLF Score in ROC analyses AUC  (95% CI)

Reader One ≥1 (n=709 zones) 0.83  (0.80, 0.86)   
Reader Two ≥1 (n=709 zones) 0.80  (0.75, 0.85)
Reader One ≥1 and Reader Two ≥1 (n=594 zones) 0.86  (0.83, 0.89)
Reader One ≥2 (n=709 zones) 0.90  (0.84, 0.92)
Reader Two ≥2 (n=709 zones) 0.91  (0.86, 0.96)
Reader One ≥2 and Reader Two ≥2 (n=576 zones) 0.96  (0.94, 0.98)

Fig. 4. ROC 
analysis of semi-
Quantitative Lung 
fibrosis (QLF) 
Score on CAD 
QLF scores for the 
cases agreed-on 
by the two radiolo-
gists (n=594 for 
1% threshold A≥1 
and B≥1; n=576 
for 25% threshold 
A≥2 and B≥2).
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of the whole lung includes lung paren-
chyma and additional anatomical struc-
tures such as vessels, fissures, and air-
ways and a partial volume effect from 
the heart. Most lung segmentations do 
not perfectly separate these other ana-
tomical components from the lung. For 
non-volumetric scan data with a 10mm 
gap between slices, we chose to address 
these confounding structural problems 
by adding the anatomical components 
into the classification model via the 
LIDC. 
Comparison of the QLF scores on a 
continuous scale from the automated 
classifier algorithm with the ordinal 
scale of semi-QLF scoring by two tho-
racic radiologists is also challenging. 
Figure 3 shows that in this compari-
son, visual assessment systemically 
underestimated the presence (i.e. de-
tection) and the amount of disease (i.e. 
quantification). The underestimation 
of the presence can be due to a) the 
broad range of Likert scale of 1 indi-
cating 1–25%. (When the reader found 
a minimal PF, the reader may not score 
this as 1 unless the zone had a mini-
mal amount of PF with clinical sig-
nificance); and to b) noisy or degraded 
CT image. Whereas the CAD system 
is forced to calculate a score regard-
less of image quality, a radiologist can 
filter-out different types of noises and 
assign a score of no PF or determine 
that the scan is not-readable (e.g. Fig. 
5. G and H). For moderate or severe 
cases, this underestimating phenom-
enon of a visual scoring vs. computer-
based scores is not a new concept and 
has already been reported in studies 
involving scoring the extent of em-
physema (30, 31). The underestima-
tion might be due to the different ap-
proaches of summing computer-based 
scores versus the visual reader’s sub-
tracting the disease extent from 100%. 
Whereas the CAD system summed up 
at the pixel level in each slice, the vis-
ual readers scrolled up and down and 
found PF and/or started from a rep-
resentative PF across slices from the 
zone and subtracted the amount. Thus, 
the QLF scoring evaluation requires 
the utilisation of well agreed-on cases 
between radiologists (1% threshold) 
and clinically meaningful guidelines 

Fig. 5. Result of Automated Classification of Quantitative Fibrosis (QLF) and scores: A, C, E, G, and 
I were original CT images and are coupled with their overlaid images B, D, F, H, and J, respectively. 
Blue dots indicate classified Pulmonary Fibrosis (PF). A. Both radiologist scored as 1 = (1, 25%) in 
both zones. B. CAD Quantitative lung fibrosis (QLF) score were 4% and 5% of in both zones and 
agreed with visual semi-QLF score at 1% thresholds. C. Both radiologists scored as 2 = (26, 50%) in 
both zones. D. QLF score were 30% and 29% in the right and left zones. E. Both radiologists scored 
as 0 in right and left zones. F. QLF detected and scores were 4.4% and 6.0% of in the right and left 
middle zones, where bilateral peripheral fibrosis is detected in dependent lung. G. When CT images 
were degraded by streak artifact, two radiologists scored as 0 in both zones. H. De-noised CAD-based 
QLF score improved detection of PF as 5% and 6% of in the right and left lower zones.  I. Both radi-
ologists scored as 2= (26, 50%) in both zones. J. QLF score underscored PF as 5% and 4% of in both 
zones compared with both radiologists’ scores. CAD classified the abnormal region as GGO when both 
radiologists might have scored the abnormality as PF. 
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(25% threshold) (3-4); the latter was 
the threshold predictive of a therapeu-
tic response to cyclophosphamide in 
the SLS (6) and is close to the 20%–
30% threshold predictive of patients’ 
survival (3). Between-reader agree-
ment in semi-QLF scoring was fair in 
the upper lung zones and moderately 
good in the middle and lower zones.
We have shown that a CAD-based 
scoring system of PF can be per-
formed and evaluated against visual 
scoring by highly experienced radi-
ologists and has several advantages. 
First, our QLF model was sensitive 
in detecting mild PF and QLF scores 
were appropriately conservative by 
not overestimating PF in more severe-
ly affected areas (Fig. 3). Both radi-
ologists showed good correlations in 
Likert scale for detection of PF (score 
of ≥1). However, QLF scores were 
better correlated with the detection of 
PF (score of ≥1) by Reader Two than 
Reader One (Table III). It seems that 
Reader Two was sensitive in detecting 
minimum PF, while Reader One was 
conservative in detecting and scoring 
PF (Table II). From detection to quan-
titation, Wells et al. have suggested 
that it may be more clinically relevant 
to discriminate between those cases 
with a visual semi-quantitative PF 
score >25% versus ≤25% level (rather 
than simply the presence or absence 
of PF) since they demonstrated that 
subjects with an extent of disease of 
20–30% are at a higher risk of mortal-
ity than those with less extensive PF 
(3-4). In our study, the AUC showed 
significantly greater accuracy between 
QLF scores and the semi-quantitative 
scores at the 25% threshold (95 CI% 
(0.94, 0.98)) than at the 1% thresh-
old (95 CI% (0.83, 0.89)). Thus, our 
classifier should be applicable to an 
assessment of the extent of PF as a 
predictor of mortality risk. 
A second advantage of the CAD-based 
PF measurement is that it uses a con-
tinuous percentage scale, rather than 
a categorical Likert scale. As a result, 
the CAD system can provide higher 
statistical power for detecting the ex-
tent of PF on the HRCT scan (32). In 
a future study, we will address the sen-
sitivity of changes in QLF score over 

time in the presence and absence of 
therapeutic intervention as a necessary 
validation step. 
A third advantage is that the CAD is 
reproducible and traceable on CT im-
ages. The system shows regions that 
are classified as PF, as in Figure 5, 
which may be visually confirmed for 
accuracy. Additionally, texture fea-
tures from de-noised images may be a 
potential way to reduce noise variation 
considering the effect of HU measure-
ments that may vary across different 
scanners, kernel reconstructions, and 
exposure parameters (16, 18). Even in 
images with streak artifact and a semi-
QLF score of 0, QLF scoring can iden-
tify PF (Fig. 5G-H), thus obviating the 
problem of obscuring of PF by streak 
artifact in visual scoring. 
There were five main limitations of 
this study. First, the CT image scores 
are non-anatomical, and the registra-
tion of lung zone may differ slightly 
from the zone visually identified by 
the radiologists. While the radiolo-
gists used anatomical landmarks to 
define each zone for semi-QLF scor-
ing, QLF scoring evenly divided each 
axial image into equal thirds. The 
worst correlation between QLF scores 
and visual scores occurred in the left 
middle lung zone, whereas the cor-
relations were consistent in the upper 
and lower zones (Table III). A second 
limitation was the use of non-volu-
metric CT data with a 10mm gap be-
tween slices. While the CAD system 
can only analyze scanned slices, radi-
ologists may impute a score between 
slices. A third limitation was that our 
training and test data sets of abnormal 
patterns were from a single clinical 
trial, the Scleroderma Lung Study. 
We are currently planning to apply PF 
classification to a new clinical trial of 
scleroderma ILD for validation (33). 
Another possible limitation was that 
the QLF scores may overestimate PF 
due to breathing artifact, partial vol-
ume effect or cardio-respiratory mo-
tion. Lastly, we did not have a visual 
assessment of overall extent of inter-
stitial lung involvement (any ground 
glass + reticular changes + honey-
combing), so that we could not evalu-
ate the overall extent of interstitial 

lung involvement by CAD in compari-
son with that assessed visually. 

Conclusion
We have developed a 5-step automat-
ed classifier of whole lung fibrosis in 
patients with scleroderma interstitial 
lung disease using HRCT. Our tech-
nique exhibited good accuracy for 
detecting fibrosis at a threshold level 
of both 1% (i.e., presence or absence 
of PF) and at a clinically meaningful 
threshold of 25% extent of fibrosis. 
Our findings suggest that this auto-
mated classifier is potentially useful 
for reproducible objective measure-
ments of fibrosis in clinical trials of 
interventions in ILD.

Appendices 

Appendix 1
Gilles’ and extension of Aujol’s 
Algorithm (23-24):
1.  Initialisation:
      u0  =   v0 = 0

2.  Iterations:
     wn+1 = PδBG

 (f–un –vn))

     vn+1 = PμBG
 (f –un –wn+1)      

     un+1 = f–vn+1–wn+1–PλBG (f–vn+1–wn+1) 

3.  Stopping test: we stop if
max(| un+1–un |,| vn+1–vn|,| wn+1–wn |) ≤ ε, 

where u, v and w represents the geomet-
ric, texture, and noised images, respec-
tively. And the sum of u and v image 
is denoised image. PBG 

is a non-linear 
projection described in appendix 2, and 
δ represents the amount of noise and λ 
represents the accuracy of algorithm. 
The sum of u, v, and w is approximately 
equal to original CT image if the algo-
rithm converges. Here, for the sake of 
simplicity and consistency, we set the 
noise parameter (δ) as 50 and texture 
parameter (μ) as 450, which were the 
upper bound of standard deviation in 
aorta and in CT image across patients. 
Because the parameter has a certain 
threshold, the results of denoised im-
ages are similar to the values above the 
threshold. The residual parameter (λ) 
was set to 1, which controls the con-
vergence of the algorithm.
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Appendix 2
Any computerised image can be digi-
talised into N by N vectors. And each 
element of a matrix is a pixel. We de-
note by X by Euclidian space RNxN and 
de note Y=X×X. In CT image, the win-
dow size is 512 by 512. 

Projection 
Each element of P, projection matrix 
is below. And it was solved by a fixed 
point method (23):          
          p0=0 and

Theoretically, this projection converge 
τ≤1/8. Practically, the author used 
¼ and he stated that it worked better 
(23).

Gradient operator
Defining a discrete total variation, they 
introduced a discrete version of the gra-
dient operator. If u  ε X, the gradient     u 
is a vector in Y given by: (   u)i,j = 

((   u)l  , (   u)2 )).

    Using

and

Divergence operator
They defined it by analogy with the 
continuous setting by div = -   *, 
where    * is the adjoint of    : that is, 
for every p ∈ Y, and u ∈ X, (-div p, 
u)X= (p,   u)Y.

Appendix 3
Due to the dependency of six zones per 
subject, the mixed effects model was 
used. The automated computer-aided 

diagnosis (CAD) quantitative lung Fi-
brosis (QLF) score was the response 
variable. The 5 Likert scales of the or-
dinal semi-QLF scores were used as 4 
dichotomised fixed-effect regressors 
with the reference group having a zero 
score and subjects and the zones that 
nested to the subject being used as ran-
dom-intercept and random-slope (coef-
ficient) in the model. The regression 
model is expressed for subject i and 
zone j as below:

CAD QLF Scoreij = �  βpsemi-QLF 
Scorep ij + � bi q subject ij | zones ij + ε ij

    bi   ~ Nq (0, Ψ)
    ε i  ~ Nni (0, σ2Λi)

where β is fixed-effect coefficient, bi is 
random-effect coefficient for subject i, 
εij is error term of subject and zone. Ψ is 
the 6 × 6 covariance matrix for the ran-
dom effects. σ2Λi is the ni × ni covari-
ance matrix for the errors in subject i.
The small counts in semi-QLF scores 
at 4 were excluded in the final regres-
sion model to avoid influential points, 
although including them did not change 
the overall conclusion.
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