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ABSTRACT
The immune system can be divided 
into the innate and adaptive arms. His-
torically, most of the research into the 
pathogenesis of spondyloarthritis (SpA) 
and other types of chronic arthritis fo-
cused on the adaptive immune system. 
Recently, the pendulum has shifted, and 
much current work in SpA focuses on 
innate immunity. Herein, I summarise 
evidence demonstrating that both the 
innate and the adaptive arms of the im-
mune system are involved in the patho-
genesis of SpA, propose a mechanism 
in which both arms interact to maintain 
chronic arthritis, and discuss potential 
research directions.

Introduction and historical 
perspective
Broadly speaking, the immune system 
can be divided into the innate immune 
system, which performs immediate rec-
ognition of pathogens and triggers a 
rapid immune response; and the adap-
tive immune system, capable of antigen 
specific responses and long term memo-
ry (1). Under current nomenclature, in-
flammatory diseases caused by aberrant 
adaptive immune elements are referred 
to as autoimmune, while those mediated 
by the innate immune system are con-
sidered autoinflammatory (2). Interest 
in the potential ability of the adaptive 
immune system to cause autoimmunity 
dates back over 100 years, to Paul Ehr-
lich’s coining of the term “horror auto-
toxicus,” referring to potential results 
of the formation of autoantibodies (3). 
Burnet’s clonal selection theory also ce-
mented the concept of disease caused by 
aberrant immune regulation (4). In con-
trast, research in the innate immune sys-
tem began relatively recently, following 
the discovery of microbial pattern-rec-
ognition molecues, such as the toll-like 
receptors (TLRs), and their downstream 
pathways (5-7).

Spondyloarthritis (SpA) encompasses 
a group of disorders characterised by 
asymmetric inflammatory arthritis, 
spondylitis, enthesitis, and extra-articu-
lar complications involving the skin, 
eyes, and intestines; the different sub-
types appear to share important clinical, 
genetic, and pathologic features (8, 9). 
Since the discovery of innate immunity, 
there has been an explosion of articles 
discussing the role of the innate im-
mune system in inflammatory diseases, 
including SpA (10, 11). Several recent 
reviews have concluded that SpA may 
be largely governed by innate immu-
nological abnormalities, with minimal 
role for adaptive events (12-14).  
Despite the recent plethora of evidence 
focusing on the innate immunity in 
SpA, however, I believe that it is pre-
mature to sound the death bells for the 
adaptive immune system in SpA. Here-
in, I will summarise the evidence for 
both and propose a mechanism which 
may allow for both arms of the im-
mune system to interact in promoting 
disease.

Evidence for involvement 
of the innate immune system
For many years, the strong association 
of human leukocyte antigen (HLA)-
B27 with SpA, particularly ankylosing 
spondylitis (AS), led to the hypothesis 
that disease may be mediated by CD8+ 
T-cells responding to peptides present-
ed by the HLA-B27 molecule (15-18). 
Recently, investigators have proposed 
alternative mechanisms whereby HLA-
B27 may help mediate SpA. Specifi-
cally, it has been suggested that the 
HLA-B27 molecule may be prone to 
misfolding within the endoplasmic re-
ticulum (ER) of the cell, leading to ER 
stress and the unfolded protein response 
(UPR) (19). Early data in support of 
this theory included studies demon-
strating inefficient folding and sub-
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sequent cytosolic degradation of B27 
heavy chains, but not of B27 chains 
mutated to include part of the HLA-A2 
sequence (20). Misfolding and the UPR 
have also been observed in the HLA-
B27 transgenic rat models of AS (21). 
Further evidence that the disease in this 
model, as well as the HLA-B27 trans-
genic mouse model of AS, is likely to 
be independent of HLA-B27’s tradi-
tional role in antigen presentation is in-
dicated by the development of disease 
in transgenic rats lacking CD8+ cells 
(22) or transgenic mice lacking β2-
microglobulin (23). Among humans, 
there are at least at least 30 HLA-B27 
subtypes, some of which (e.g. B*2705) 
are strongly associated with AS, while 
others (e.g. B*2706 and B*2709) are 
less so (24, 25). In one study, subtypes 
strongly associated with AS folded less 
efficiently than did subtypes not consid-
ered to be associated with AS; however, 
this association was incomplete, as the 
AS-associated B*2707 allele folded as 
efficiently as did B*2706 and B*2709 
(26). Moreover, the underlying assump-
tion that HLA-B*2709 is protective 
against AS has been questioned (24). 
Besides HLA-B27, additional genetic 
factors suggest involvement of the in-
nate immune system in SpA. Multiple 
linkage studies have identified poly-
morphisms in or near tumour necro-
sis factor (TNF)α (27-29), Interleukin 
(IL-1) (30-36) and TLRs (37) that are 
associated with increased risk of SpA. 
Recently, the first genomewide as-
sociation study (GWAS) for AS was 
published (38). This study of over 2000 
patients with AS and 5000 controls, 
validated with a replication set of 898 
patients and over 1500 controls, iden-
tified several significantly associated 
genes, including the IL-23 Receptor 
(IL-23R) and an endoplasmic reticu-
lum aminopeptidase (ERAP1), in ad-
dition to the anticipated linkage to the 
Major Histocompatibility complex. As 
reviewed by Brown (2010) (39), poten-
tial but non-definitive genes identified 
by the GWAS are also suggestive of 
innate immune involvement, including 
the Interleukin-1 Receptor 2, TNF (lig-
and) superfamily 15 (TNFSF15), and 
the TNF Receptor type-1 associated 
death doman (TRADD). The latter two 

had also been linked to SpA in separate 
studies (40, 41).
Since IL-23 is produced by T-cells 
(42), its linkage with AS may suggest 
evidence of adaptive immune involve-
ment. However, IL-23 appears to have 
important innate functions. As reviewed 
by Abraham and Cho, IL-23 is present 
on multiple innate immune cells, such 
as dendritic cells and macrophages, 
whereupon expression can directly 
result in tissue damage (43); it is also 
produced as a result of activation of 
the UPR (44). It appears to play a role 
in inflammatory bowel disease (IBD), 
as it is highly expressed in the lamina 
propria and can promote expression of 
multiple inflammatory cytokines (45). 
IL-23 is required for murine colitis and 
is also over-expressed in the terminal 
ileum of patients with AS (46, 47). 
Besides IL-23, there is additional evi-
dence that the innate immune system 
may be up-regulated in SpA. For exam-
ple, Chou et al. (2007) demonstrated 
increased TNF-α and IL-1 production 
from peripheral blood mononuclear 
cells of AS patients compared to their 
first-degree relatives (48). Similarly, 
Candia et al. (2007) reported increased 
TLR2 expression among antigen-pre-
senting cells of psoriatic arthritis (PsA) 
patients, compared to healthy controls 
(49). Additionally, a population of mac-
rophages characterised by CD163 ex-
pression is present in the synovium of 
SpA patients, with their numbers corre-
lating with markers of disease activity 
and decreasing following therapy with 
TNF-α antagonists (50, 51).
Finally, responses to treatments target-
ing the innate immune pathway sup-
port the importance of innate immunity 
in SpAs. The effectiveness of TNF-α 
inhibiton in SpA has been demonstrat-
ed in multiple randomised studies (52-
56). There are no randomised trials of 
IL-1 inhibition in SpA; open-label tri-
als have shown mixed results (57, 58). 
A recent case report showed a dramatic 
response to IL-6 blockade in a patient 
with reactive arthritis (ReA) (59).

Evidence for involvement 
of the adaptive immune system
Although the UPR discussed above 
is one theory potentially explaining 

the association between HLA-B27 
and SpA, this issue is not yet settled, 
as there are several lines of evidence 
indicating that HLA-B27s traditional 
role in antigen presentation may yet 
account for its disease association, and 
several recent reviews likewise discuss 
adaptive dysregulation in SpA (9, 60-
62). Scofield et al. (1995) identified 
synthetic peptides derived from enteric 
bacteria that have sequence homology 
to HLA-B27 and were bound by the 
molecule itself, potentially suggesting 
self-presentation by HLA-B27 (63). AS 
patients, as compared to B27+ healthy 
control subjects, were more likely to 
have antibodies in their serum directed 
against portions of these peptides (64). 
Recent studies have demonstrated that 
cell lines transfected with the HLA-B27 
molecule present similar cross-reactive 
peptides (65), and that this presenta-
tion of cross-reactive peptides may be 
absent in HLA-B27 alleles that are not 
associated with AS (66). Most recently, 
Ben Dror and colleagues purified 1,268 
peptides from a B27+ cell line, of which 
569 were verified to be tightly bound to 
B27 (67). 28 of the peptides were con-
sidered to be arthritogenic candidates, 
as they were derived from cartilage 
or bone (n=26) or from the B27 mol-
ecule itself (n=2). In addition, several 
peptides, some of which were among 
those derived from cartilage or bone, 
were homologous to enteric bacteria. 
The authors concluded that the pep-
tides identified in their study may help 
recruit T-cells directly responsible for 
the disease. In an accompanying edito-
rial, Lopez de Castro argued that while 
peptide sequences similar to those of 
bacteria may be found by chance and 
are thus not necessarily indicative of 
involvement of the associated bacteria 
in the disease, they do support the pos-
sibility that cross-reactive immunity 
may play a role in the development of 
B27-associated diseases (68).
The possibility that B27 may mediate 
disease through its traditional role of 
antigen presentation may be consist-
ent with the finding mentioned above 
from the GWAS in AS showing linkage 
of ERAP1 with AS (38), data that con-
firmed several prior studies conducted 
in different populations (69-71). The 
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ERAP1 gene is involved in MHC Class 
I peptide processing, and its disruption 
in mice leads to impaired CD8 respons-
es (72). Importantly, it has also been 
argued that ERAP-1 polymorphisms 
may be associated with AS by increas-
ing shedding of the TNF receptor (73), 
although it is not clear whether this 
theory would account for the polymor-
phisms being located at the catalytic 
site of the aminopeptidase activity (39). 
In addition, ERAP2 polymorphisms 
may also be associated with AS, despite 
that ERAP2 is not involved in receptor 
shedding; furthermore, there is no as-
sociation between ERAP1 polymor-
phisms and levels of soluble receptors 
(74, 75). However, the question regard-
ing the mechanism of ERAP1 polymor-
phisms in AS remains open. 
There is animal data to suggest a role 
for adaptive immunity in AS. Mikecz 
et al. (1987) induced polyarthritis and 
spondylitis in Balb/c mice with repeat-
ed immunisation with the human car-
tilage proteoglycan aggrecan, particu-
larly the G1 domain (76, 77). Immuni-
sation with the related molecule versi-
can, which was found to be localised 
to the enthesis, sacroiliac joints, and 
intervertebral disc annulus, resulted in 
spondylitis in the absence of peripheral 
arthritis (78). Evidence of B-cell and T-
cell immunity to the inciting antigens 
has also been demonstrated in these 
mice (78, 79). Although the relevance 
of this model to human disease is un-
known, patients with AS may likewise 
have elevated T-cell responses to these 
proteoglycans (80, 81).
Histological data has provided evidence 
of adaptive immunological events in 
the synovium and cartilage of arthritis 
patients. Specifically, synovial biopsies 
of patients with ReA and AS contain 
B-cell rich follicles, with some reports 
additionally showing aggregates of T-
cells and B-cells arranged into struc-
tures similar in appearance to germinal 
centers (82-85). Although the mere 
presence of lymphocytes could reflect 
recruitment secondary to pre-existing 
inflammatory processes, findings of 
T-cell/B-cell interactions and germinal 
center-like aggregates in inflamed syn-
ovium arguably suggest that the lym-
phocytes may be playing a more fun-

damental role in the etiopathogenesis 
of the disease. In addition, biopsies of 
femoral heads of AS patients revealed 
subchondral lymphoid infiltrates only 
in areas with cartilage; this was in con-
trast to RA patients, in whom subchon-
dral inflammation was not affected by 
the presence of cartilage (86). These 
findings suggest that T-cell and possi-
bly also B-cell immunological events 
may drive the inflammation at the 
bone-cartilage interface, as recently 
stated by Appel (87).
Studies of B-cell hypermutations have 
also provided evidence for adaptive 
immune activation within the synovi-
um of inflamed joints. A proliferating 
B-cell will undergo random mutations, 
some of which will lead to changes in 
the linear amino acid sequence, while 
others will be silent; it has been argued 
that high ratios of mutations leading to 
amino acid changes (R) to silent muta-
tions (S) (R:S ratios) are consistent with 
an antigen-driven process, enabling the 
study of such mutations within the syn-
ovium (88, 89). Voswinkel et al. found 
multiple immunoglobulin genes with R:
S ratios greater than three in a germinal 
center obtained from the synovium of a 
patient with AS, findings suggestive of 
an antigen-driven process (84). On the 
other hand, AS has been described in 
two patients lacking B-cells (90).
A number of investigators have sought 
evidence of T-cell oligoclonality in the 
synovium of patients with SpA. A meth-
od to evaluate for oligoclonality con-
sists of spectratyping, which involves 
performing PCR on cDNA obtained 
from each of the Vβ family members. 
In the absence of oligoclonality, each 
Vβ family member would be expected 
to demonstrate a Gaussian curve in their 
respective size spectra, while devia-
tions from a Gaussian distribution are  
suggestive of oligoclonal expansions 
(91). An additional method to evaluate 
for oligoclonality involves quantitating 
the amount of RNA product across the 
different Vβ families, potentially iden-
tifying evidence of preferential use of 
one or more families (92). Using these 
techniques, several investigators have 
identified evidence of expanded oli-
goclonal T-cell populations in patients 
with AS and other adult and paediat-

ric SpA (93-99). As further evidence 
of an antigen-driven process related 
to the synovium, some of these stud-
ies specifically reported that the clonal 
populations were present only in the 
synovium, not in the peripheral blood 
(93, 95, 97).
Finally, another line of evidence of in-
volvement for adaptive immunity in 
AS is the reproducible findings of el-
evated IgA levels. Numerous studies 
have reported that patients with SpA 
have elevated total IgA levels compared 
to healthy controls (100-102). Several 
studies have also demonstrated correla-
tions in AS patients between IgA levels 
and disease severity, including decreases 
in the IgA level following therapy (102-
106). Other investigators have identified 
specific antigens against which elevated 
IgA levels have been found. With the 
exception of collagen (107), these are 
mostly enteric-associated antigens, such 
as Klebsiella (108-110), celiac proteins 
(111), and inflammatory bowel disease 
(IBD)-associated antigens (112-114). 
Not all studies have showed consistent 
findings, however (115).
 
Towards a unifying construct 
in SpA
I have summarised above evidence for 
involvement of both innate and adap-
tive immunological mechanisms in 
SpA. These possibilities are not mutu-
ally exclusive, as it is possible that each 
arm could play a separate role. Specifi-
cally, the data may suggest that arthritis 
results from an antigen-driven process, 
but chronic activation of the innate im-
mune system is also required. That is, 
I am hypothesizing that for arthritis to 
be perpetuated, there needs not only to 
be an antigen-driven process, but also a 
chronic inflammatory stimulus. 
The first question is: what is this chronic 
inflammatory stimulus? One possibility 
is trauma. Research by Dennis McG-
onagle and colleagues has elucidated 
the relationship between the synovial-
entheseal complex and SpA (116).  The 
entheses are sites of repeated biome-
chanical stress, resulting in foci of mi-
cro-trauma. These small injuries cause 
the release of fragments of fibronectin, 
hyaluron, and other molecules from 
damaged connective tissue, all of which 
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may directly activate synovial macro-
phages via TLRs and other pattern-rec-
ognition molecules. Activation of these 
molecules results in the up-regulation of 
approximately 600 stress-related genes 
(117, 118). Because of the anatomical 
connections between the enthesis and 
the synovium, as well as the marked 
vascularity of the latter, inflammation 
in the enthesis spills over into the syn-
ovium, causing local arthritis (119). 
The innate stimulus need not be local-
ised to the joint, and it appears likely 
that in many cases, an additional stimu-
lus may be present elsewhere (Fig. 1). 
The most evident example of this is the 
association between gut inflammation 

and SpA; approximately 20–25% of 
patients with IBD have peripheral ar-
thritis (120, 121) and conversely, near-
ly two-thirds of adult SpA patients have 
sub-clinical gut inflammation detected 
by colonoscopy, with similar results re-
ported in a small paediatric study (122, 
123). This sub-clinical gut inflamma-
tion has not typically been found in 
patients with other forms of arthritis, 
even among patients similarly treated 
with non-steroidal anti-inflammatory 
drugs (123, 124). Further clinical evi-
dence suggesting a link between the gut 
and the joints comes from longitudinal 
studies demonstrating that the presence 
of gut inflammation at baseline predicts 

persistence of the arthritis at follow-up 
evaluations 1–9 years later (122, 125). 
There is also a strong genetic link; sev-
eral genes identified by GWAS studies 
in IBD, particularly the Interleukin-23 
receptor (IL-23R) and TNFSF15, have 
also been linked to AS (38, 126, 127).
SpA encompasses several different en-
tities, including AS, ReA, IBD-associ-
ated arthritis, undifferentiated SpA, and 
psoriatic arthritis (PsA) in adults (8); as 
well as the enthesitis-related arthritis 
subtype of juvenile idiopathic arthri-
tis in children (128). As summarised 
above, sub-clinical gut inflammation 
has been demonstrated in patients with 
AS, undifferentiated SpA, ReA, and 
juvenile SpA (122, 123, 129), and pa-
tients with IBD-associated arthritis by 
definition have both IBD and arthritis, 
typically SpA (130). PsA has long been 
recognised to be highly heterogeneous, 
with a subset resembling SpA (131). 
Gut inflammation has likewise been 
detected in the subset resembling SpA 
(132); given the heterogeneity of PsA, 
it is likely that other mechanisms may 
be involved in the other subtypes. How-
ever, the presence of gut inflammation 
in the majority of patients with most 
subtypes of SpA underscores its impor-
tance in the pathogenesis of SpA (133).
The cause of this auto-inflammatory 
stimulus is of course elusive. However, 
data is emerging demonstrating shared 
impairments in responses to gut flora 
in both IBD and AS. Specifically, al-
though the foecal flora in patients with 
AS and rheumatoid arthritis (RA) ap-
pears to be similar (134), AS patients 
are unable to mount appropriate immu-
nological responses to foecal flora, as 
evidenced by decreased IL-10 produc-
tion by peripheral blood mononuclear 
cells exposed to bacteroides species 
(135). Likewise, multiple studies have 
shown that patients with IBD have ei-
ther decreased proliferative responses 
or decreased TLR-2 mediated signal-
ing to foecal flora, particularly among 
those with NOD2 mutations (136-138). 
NOD2 is an intracellular pattern rec-
ognition molecule, mutations in which 
have been shown to be associated with 
a substantially increased risk of Crohn’s 
Disease (139-141). It has been hypothe-
sized that the decreased responsiveness 

Fig. 1. Interaction between intestinal and synovial inflammation in the pathogenesis of SpA.
Legend: Intestinal inflammation (associated with IL-23R and TNFSF15) and synovial inflammation 
(associated with HLA-B27 and ERAP1) develop separately. However, circulation of immunological 
cells from the intestines to the synovium permits the synovitis to become chronic. Thus, SpA requires 
intestinal inflammation and is therefore associated with similar genetic markers as IBD. However, SpA 
also requires specific adaptive immunological events targeting the synovium, as reflected by the as-
sociation with HLA-B27 and the ERAP1 polymorphism.
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to flora permits bacterial overgrowth, 
focal injury, and inflammation (136, 
137, 142). Since IL-23 and TNFSF15 
both appear to be involved in the re-
sponse to mucosal flora, polymorphisms 
in this gene may account for alterations 
in the handling of this flora that permit 
a chronic inflammatory state within the 
intestines of both IBD and SpA patients 
(46, 143, 144). In contrast, HLA-B27 
and ERAP1 polymorphisms are unique 
to AS (38).
The second question is: what are the 
adaptive immunological targets in 
SpA? In some cases, the adaptive im-
munological events may be triggered 
by enteric infections. Mononuclear cells 
infected with Salmonella can travel to 
lymphoid tissue and induce a T-cell re-
sponse (145) and also have increased 
affinity for synovial endothelial cells 
(146). Perhaps consequentially, bacteri-
al antigens or genetic material has been 
identified in the joints of patients with 
ReA and other types of SpA (147-149). 
This may trigger humoural immunity, 
as patients with ReA and other types 
of SpA generate IgA and IgG antibod-
ies against Salmonella and other enteric 
organisms (150-152). 
Alternatively, the adaptive events may 
be unrelated to infectious agents and in-
stead may be directed towards cartilagi-
nous structures. This possibility is sup-
ported by the evidence discussed above 
of antibodies and T-cell reactivity to 
proteoglycans and collagen in patients 
with SpA (80, 81, 107). Even if anti-
bodies prove to be an epiphenomenon, 
T-cell immunity may yet prove essen-
tial to the disease; indeed, this would be 
predicted based upon the very finding 
of a Major Histocompatibility Class I, 
rather than Class II, association with 
SpA. 
To summarise, in addition to their 
joints, many patients with SpA appear 
to have a chronic inflammatory process 
in at least one other organ, particularly 
the gut or the enthesis. Gut inflamma-
tion may result from dysfunctional in-
teractions between local immunologic 
cells and microbiologic flora, while 
enthesitis may reflect microtrauma. 
This inflammation appears to be me-
diated by the innate immune system. 
However, there is evidence suggesting 

that T-cell immunity or T-cell / B-cell 
interactions may be responsible for the 
arthritis in SpA. The shared innate in-
volvement of the gut inflammation in 
IBD and most types of SpA may be 
reflected by the findings of similar IL-
23R and TNFSF15 polymorphisms in 
the above conditions (38, 127, 153). In 
contrast, the specificity of the adaptive 
dysregulation in SpA may be reflected 
by ERAP1 polymorphisms and the 
HLA-B27 molecule, neither of which 
is associated with IBD.
 
Questions and research directions
This hypothesis suggests that the dif-
ference between, for example, IBD 
without SpA and IBD with SpA con-
sists of specific adaptive immunologi-
cal events targeting the synovial-enthe-
seal complex. This possibility might be 
pursued with investigations evaluating 
for T-cell or humoural reactivity to car-
tilaginous structures such as proteogly-
can and collagen in patients with IBD 
with or without arthritis, as well as in 
patients with SpA. 
It is generally accepted that the car-
tilage-bone interface is the primary 
target in SpA, with synovitis occur-
ring largely as a spillover effect (14). 
However, some of the data summarised 
above supports the possibility that the 
synovium may also be an immunologi-
cal target. It may be the case that en-
thesitis and synovitis result from differ-
ent processes, with the former primarily 
autoinflammatory and the latter with an  
autoimmune component. This possibil-
ity would be consistent with histologi-
cal studies: as reviewed by Vandooren, 
mixed B-cell and T-cell infiltrates are 
typically detected in the synovium, 
while a study of entheseal histology re-
vealed a predominant macrophage pop-
ulation (154). Paired entheseal/synovial 
biopsies could evaluate this question.
Another question is whether different 
mechanisms underlie peripheral versus 
axial arthritis. Flares of peripheral ar-
thritis appear to be more tightly linked 
to IBD flares as compared to axial dis-
ease (120), and peripheral arthritis is 
more likely to be associated with sub-
clinical gut inflammation as compared 
to spondylitis (155). In addition, periph-
eral and axial arthritis respond different-

ly to conventional therapies (156), all of 
which suggests that the two may differ 
at the mechanistic level. There may be 
support for this possibility from imag-
ing studies: while knee MRIs appear to 
demonstrate both entheseal changes as 
well as joint fluid (157), MRIs of sac-
roiliac joints are often negative for joint 
fluid, and its presence is not supportive 
of a diagnosis of sacroiliitis (158). These 
findings may warrant further explora-
tion. Because of the obvious difficulties 
in accessing spinal tissue, no systematic 
anatomical comparisons have been per-
formed. However,  imaging studies may 
shed some light on differences between 
peripheral and axial arthritis.
Finally, if gut inflammation in SpA is 
providing an autoinflammatory stimu-
lus that is driving some of the arthritis, 
then we as rheumatologists arguably 
need to be aware of the status of the 
intestines in SpA patients. Studies us-
ing colonoscopy have shown that SpA 
patients with sub-clinical inflamma-
tion were more likely to have active 
arthritis at follow-up visits (122, 125), 
underscoring the prognostic value of 
this information. It is not feasible to 
perform colonoscopy on asymptomatic 
SpA patients in clinical practice, so 
research should be directed towards 
non-invasive tests of intestinal inflam-
mation, such as the foecal biomarkers 
calprotectin and lactoferrin (159-162). 
   
Conclusion
Adaptive and innate immune com-
ponents both appear to be important 
in SpA. In this review, I propose that 
the adaptive immune system targets 
the inflammation into the joints, while 
autoinflammatory stimuli in the intes-
tines and the enthesis are also essential. 
Multiple questions remain undefined, 
including the fine specificity of the 
adaptive targets, the role of antibod-
ies versus T-cell immunity, mechanis-
tic differences between peripheral and 
axial SpA, and the potential role for 
monitoring gut inflammation in clini-
cal practice in SpA patients. 
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