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ABSTRACT
Methotrexate remains the most widely 
used agent for the treatment of rheuma-
toid arthritis and other chronic inflam-
matory diseases. Although introduced 
as a chemotherapeutic agent for the 
treatment of malignancies, it is clear 
that, in the doses used, the mechanism 
of action in the suppression of inflam-
mation differs from simply suppression 
of purine and pyrimidine metabolism, 
resulting in inhibition of proliferation. 
Here we review the proposed mecha-
nisms of action of methotrexate.

The first report on the use of methotrex-
ate’s closely related analogue aminop-
terin for the treatment of rheumatoid 
arthritis (RA) was in 1951 (1). Several 
decades passed before the agent was 
again used to treat RA at which time 
aminopterin was no longer manufac-
tured but methotrexate (amethopterin) 
remained available. Both of these 
drugs were the products of a rational 
drug design process in which antago-
nistic analogues of folic acid, known to 
be required for purine and pyrimidine 
synthesis, were developed to prevent 
cell proliferation for the treatment of 
cancer. Although originally applied to 
patients with RA in doses commonly 
utilised for the treatment of cancer, 
methotrexate is now used at doses that 
are up to two log orders lower than its 
use to treat tumours.  
The disparity between the methotrexate 
doses required to inhibit rapid cellular 
proliferation and those used to treat RA 
and other inflammatory diseases raises 
a question as to whether the mecha-
nisms are the same. Indeed, it is likely 
that although many of the typical side 
effects of methotrexate, as used to treat 
RA, are due to inhibition of cellular pro-
liferation (e.g. leucopenia and anemia, 
stomatitis and GI ulcerations, alopecia) 
the doses of methotrexate used to treat 
RA may affect different physiologic 
or pharmacologic reactions. Further 
evidence against the antiproliferative 

effects of methotrexate mediating the 
anti-inflammatory effects of the drug 
in the treatment of RA was recently 
reviewed by Visser and colleagues (2) 
who noted that in multiple individual 
studies and meta-analyses folic acid 
doses greater than 5mg/week dimin-
ished GI and hepatic toxicity without 
affecting efficacy. In contrast, high 
doses of folinic acid reversed the anti-
inflammatory effects of methotrexate 
therapy (2), a phenomenon most likely 
explained by competition by folinic 
acid, but not folic acid, for cellular up-
take of methotrexate (3, 4). Thus, it is 
difficult to ascribe the anti-inflamma-
tory effects of methotrexate to its anti-
proliferative effects.
One mechanism that has been invoked 
to explain the anti-inflammatory ef-
fects of methotrexate is that it induces 
production of reactive oxygen species 
(ROS) with support from in vitro stud-
ies of rapidly dividing cell lines (5). 
In these cells methotrexate induced 
increased concentrations of cytosolic 
peroxide levels and inhibited prolifera-
tion and stimulated cellular function in 
a manner that was reduced by the ad-
dition of antioxidants. Although these 
studies are consistent they were never 
carried out in primary cells and mono-
cyte/macrophages do not generally 
undergo cellular division, unlike the 
cultured cell lines studied. No evidence 
from primary cells, animal models or 
patient material has been adduced to 
support this hypothesis.
Another hypothesis invoked to ex-
plain the anti-inflammatory effects 
of methotrexate is that, by inhibiting 
the generation of tetrahydrofolate, a 
donor of methyl groups required in a 
large number of biochemical reactions, 
methotrexate inhibits transmethylation 
reactions required for inflammation 
(6-8). Although this is an attractive hy-
pothesis supported by in vitro results, it 
is not supported by clinical data. Prior 
studies of a selective transmethylation 
inhibitor, 3-deaza-adenosine, indicate 
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that although the agent inhibits trans-
methylation reactions in patients there 
is no effect on disease activity (9).
Finally, methotrexate has previously 
been shown to induce adenosine release 
both in vitro and in vivo in both animal 
models of inflammation and in patients 
with RA (10-13) and adenosine, acting 
at its receptors, is a potent inhibitor of 
inflammation. Methotrexate, which ac-
cumulates intracellularly as methotrex-
ate polyglutamate, inhibits aminoimi-
dazole carboxamide ribonucleotide 
(AICAR) transformylase more potently 
than other enzymes involved in de novo 
purine biosynthesis (14). This enyme 
inhibition leads to accumulation of 
AICAR intracellularly and AICAR, by 
competitively inhibiting AMP deami-
nase, leads to accumulation of AMP 
which is released and converted extra-
cellularly to adenosine by the action of 
ecto-5’-nucleotidase (CD73, (13, 15)). 
Studies with adenosine receptor antag-
onists and in murine models of inflam-
mation in which adenosine receptors 
are blocked or deleted provide strong 
evidence that the anti-inflammatory ef-
fects of methotrexate are mediated by 
adenosine (15-19). Moreover, resist-
ance to the anti-inflammatory effects 
of methotrexate correlate with poor ad-
enosine release following methotrexate 

treatment in different strains of mice 
(20). Because caffeine, a poorly se-
lective adenosine receptor antagonist, 
blocks the anti-inflammatory effects of 
adenosine in vitro and in animal models 
of arthritis (16) it is possible that drink-
ing coffee or other caffeinated drinks 
might interfere with the therapeutic 
actions of methotrexate. A prospective 
study and a case-control study (21, 22) 
support this hypothesis although a ret-
rospective study of RA patients does 
not support reversal of the therapeutic 
effects of methotrexate by coffee (23). 
Other pharmacogenetic studies provide 
further support for the role of the ad-
enosine pathway in the mechanism of 
action of methotrexate (24-32).
Adenosine release also may help explain 
some of the toxicities of methotrexate. 
Clearly the anti-proliferative effects 
of methotrexate explain the stomatitis, 
anemia, leucopenia and alopecia that 
occasionally accompanies methotrexate 
therapy for RA or psoriasis. In contrast, 
the hepatic toxicity may result from 
methotrexate-mediated adenosine re-
lease since adenosine, acting at A1 and 
A2B receptors stimulates hepatic stea-
tosis (33) and adenosine, acting at A2A 
receptors, plays a role in the develop-
ment of hepatic fibrosis (34, 35). Some 
patients suffer from severe fatigue on 

the day they take their methotrexate and 
this is likely due to CNS adenosine re-
lease which leads to sleep and somno-
lence (36-41). Indeed, in children who 
develop coma after administration of 
high doses of methotrexate administra-
tion of an adenosine receptor antagonist, 
aminophylline reverses the somnolence 
(42).
Thus, the most likely explanation of 
methotrexate’s actions in the therapy of 
RA is that methotrexate stimulates adeno-
sine release and adenosine suppresses the 
inflammatory functions of neutrophils, 
macrophage/monocytes, dendritic cells 
and lymphocytes in the pathogenesis of 
joint inflammation (43, 44).
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