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ABSTRACT
Exogenous glucocorticoids (GCs) are 
used as anti-inflammatory and immu-
nosuppressive drugs in the treatment 
of a wide range of rheumatic and other 
inflammatory diseases. GCs exert their 
immunosuppressive, anti-inflammatory 
and anti-allergic effects on primary and 
secondary immune cells, tissues and or-
gans via different mechanisms of action 
in a dose-dependent manner. However, 
their pleiotropic effects also lead to nu-
merous adverse effects such as unwant-
ed metabolic effects and osteoporosis. 
The mechanisms of action include the 
classical genomic mechanism resulting 
from activation of the cytosolic gluco-
corticoid receptor (cGCR), non-specif-
ic, non-genomic effects caused by inter-
actions with cellular membranes, sec-
ondary non-genomic effects initiated by 
the cGCR and specific interactions with 
a membrane-bound glucocorticoid re-
ceptor (mGCR). Optimised glucocorti-
coids, such as selective glucocorticoid 
receptor agonists, are being devel-
oped to minimise the adverse effects 
many patients experience, especially if 
GCs are given at higher dosages over 
longer periods of time. Immunostimu-
latory effects of low concentrations of 
endogenous glucocorticoids and the 
influence of pre-receptor metabolism 
appear of interest for further investiga-
tion. The most important approach to 
optimise the risk-benefit ratio of GCs 
is to understand in more detail how 
the molecular mechanisms of genomic 
and non-genomic GC actions – and 
their dose-dependency – mediate the 
clinically wanted benefits but also the 
known adverse effects.

Introduction
Exogenous glucocorticoids (GCs) are 
the most commonly used anti-inflam-
matory and immunosuppressive drugs 
in the treatment of a wide range of 
rheumatic and other inflammatory dis-
eases. These substances exert their im-
munosuppressive, anti-inflammatory 

and anti-allergic effects on primary and 
secondary immune cells, tissues and 
organs via different mechanisms of 
action in a dose-dependent manner (1-
3). The overall physiological effect of 
endogenous glucocorticoid hormones 
released by the adrenal cortex is to in-
crease blood glucose concentrations by 
opposing the action of insulin and in-
creasing glucose production and release 
from the liver via gluconeogenesis, 
which is especially important in situa-
tions of stress (4).
Hench and his colleagues had noted a 
correlation between improvement of 
disease activity in patients with rheu-
matoid arthritis (RA) and the incidence 
of jaundice or pregnancy (5). They con-
cluded that there was likely an “anti-
rheumatic factor” which is “neither 
a product of the liver nor a unisexual 
hormone” (5-7), and this finally led to 
the application of synthesised cortisone 
to treatment of RA. Initially, a female 
patient with severe disease was treated 
with cortisone in September 1948, with 
the result of a dramatic improvement of 
the disease activity (6). Further patients 
were treated as well and the use of GCs 
was disseminated over the whole field 
of rheumatology and medicine.
GCs were used to treat numerous dis-
eases, and the potential of these drugs 
to induce adverse effects became obvi-
ous. Unwanted effects on metabolism, 
bone tissue, muscles, eyes and skin, and 
increased susceptibility to infections oc-
cur after treatment with higher GC dos-
ages over longer periods of time (3, 8). 
These adverse events led to synthesis of 
new GC agents in the 1950-1960s, e.g. 
prednisolone and methylprednisolone 
exerting stronger anti-inflammatory 
and immunosuppressive potencies, but 
weaker mineralocorticoid activities 
such as sodium/water retention and po-
tassium excretion (9).
In this review we summarise current 
knowledge of pharmacodynamics of 
glucocorticoids, including (1) the cel-
lular effects of GCs on immune cells, 
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(2) the therapeutic effects of GCs, (3) 
dose-effect-correlations of glucocorti-
coids with adverse effects, (4) mecha-
nisms of glucocorticoid actions, (5) 
genomic effects mediated by the cyto-
solic glucocorticoid receptor (GCR), 
(6) rapid, non-genomic effects of GCs 
and (7) optimised conventional GCs 
and new drugs.

Cellular effects of glucocorticoids 
on immune cells
Commonly used glucocorticoids like 
prednisone, prednisolone, methylpred-
nisolone or dexamethasone mediate 
many anti-inflammatory and immu-
nomodulatory effects on primary and 
secondary immune cells, tissues and or-
gans (1). On the cellular level, decreas-
es are seen in the number of circulating 
monocytes/macrophages, their synthe-
sis of pro-inflammatory cytokines and 
prostaglandins and their expression of 
MHC class II molecules and Fc recep-
tors. A reduction of circulating T-cells 
and their production and action of IL-
2 (and other cytokines) also is seen. 
Furthermore, GCs used therapeutically 
lead to a lower number of eosinophil 
and basophil granulocytes while the 
number of circulating neutrophil granu-
locytes is increased. GC treatment af-
fects endothelial cells through dimin-
ished vessel permeability, expression 
of adhesion molecules, and fibroblast 
proliferation. Furthermore, production 
of fibronectin and prostaglandins are 
decreased by GC (1, 10, 11). 
In summary, therapeutically-used glu-
cocorticoids (1):
• Inhibit leukocyte traffic and access 

of leucocytes to the site of inflam-
mation,

• Interfere with functions of leuco-
cytes, fibroblasts and endothelial 
cells, and

• Suppress the production and actions 
of humoral factors involved in the 
inflammatory process (1).

Therapeutic effects of 
glucocorticoids
The most important therapeutic effect 
of GCs is the inhibition of the inflam-
matory processes, resulting in part 
from effects on primary and second-
ary immune cells. The inflammatory 

process is usually characterised by an 
up-regulated synthesis of mediators 
of inflammation such as cytokines or 
prostaglandins, which finally leads to 
the typical signs of inflammation: pain, 
swelling, and loss of function (10).
GCs inhibit nuclear translocation and 
the function of proinflammatory tran-
scription factors such as activator 
protein 1 (AP-1) or nuclear factor-κB 
(NFκB), which are involved in the 
regulation of the expression of pro-in-
flammatory genes (12-14). The synthe-
sis of proinflammatory cytokines, e.g. 
interleukin-1 (IL-1), IL-6 and tumour 
necrosis factor alpha (TNF-α), is dose-
dependently reduced as one key result 
of the so-called “transrepression” (3, 
11). These mechanisms may explain 
in large part retardation of radiologi-
cal progression in rheumatoid arthritis 
(RA), as TNF-α and IL-1 stimulate the 
production of receptor activator of nu-
clear factor kappa B ligand (RANKL). 
RANKL supports the generation of 
mature and active osteoclasts, respon-
sible for bone resorption and erosions 
in RA (15, 16).
On the other hand, treatment with GCs 
results in induced synthesis of anti-
inflammatory proteins (e.g. lipocortin 
1, inhibitor of NFκB (IκB)), and also 
regulator proteins which are important 
for metabolism. This process is termed 
“transactivation”, and is thought to be 
responsible for many of the adverse   
effects of GCs (3, 8).

Correlation between GC dosage, 
therapeutically desired effects and 
adverse effects
The most important variable in the like-
lihood of therapeutically desired and 
adverse effects of GC is the dosage, 
modified by the rate of absorption, con-
centration in target tissues, and affin-
ity of GCs for glucocorticoid receptors 
(GCRs) (10, 17). GCs, given at high 
doses and/or over long periods of time 
are usually clinically very effective, but 
may induce numerous different adverse 
effects (8). Undesirable endocrine and 
metabolic effects include diabetes melli-
tus, redistribution of body fat, increased 
body weight, osteoporosis, myopathy, 
atherosclerosis, and hypertension (8, 
18, 19). Other adverse effects include 

increased risk of infection, depression, 
cataracts, thinning and ekchymoses of 
the skin (3, 8, 18, 19).
The main aim of a successful GC 
therapy is a sufficient treatment of the 
underlying disease while minimis-
ing the dose of the administered GC 
in order to prevent the occurrence of 
adverse effects. Therefore, ‘low-dose’ 
glucocorticoid therapy, i.e. prednisone-
equivalent doses of less than 7.5 mg 
per day, is regarded as optimal main-
tenance therapy for many patients with 
rheumatic diseases requiring use of 
GCs (20). These oral doses result in 
a saturation of the GCR of less than 
40–50% and are known to result in 
rather mild adverse effects (10, 17, 21). 
More than 50% receptor saturation is 
seen with prednisone-equivalent doses 
of 7.5–30 mg per day. The so-termed 
‘medium doses’ may be initially given 
in primary chronic rheumatic diseases, 
but are known to have dose-depend-
ent and considerable adverse effects if 
used for longer periods of time (2, 18). 
Therapy with prednisone-equivalent 
doses of 30–100 mg per day is termed 
‘high-dose’ glucocorticoid therapy, 
with an almost complete GCR satu-
ration. These doses often result in an 
successful initial treatment of subacute 
rheumatic diseases, but cannot be used 
for long-term therapy because of their 
high potential for serious adverse ef-
fects (18). Likewise, ‘very high doses’ 
(prednisone-equivalent of >100 mg 
per day) of GCs and ‘pulse’ therapy 
(prednisone-equivalent of ≥250 mg per 
day, usually given for 1–5 days) can-
not be administered for long-term ther-
apy because of severe adverse effects. 
Both ‘high-dose’ and ‘very high dose’ 
regimens (i) result in a complete GCR 
saturation and (ii) produce additional 
rapid non-genomic GC effects (see be-
low). Therefore, these doses are given 
in case of potentially life threatening 
forms of rheumatic diseases, such as 
systemic lupus erythematosus, myosi-
tis, dermatomyositis, vasculitides, and 
are usually not indicated for most pa-
tients with rheumatoid arthritis (20).

Mechanisms of GC action
Both the desirable and unwanted GC ef-
fects depend on the structure of the GC 
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molecule which belongs to the family 
of steroid hormones and is character-
ised by a sterol skeleton. A number of 
empirical studies over many years have 
established that the 17-hydroxy, 21-car-
bon steroid configuration is required for 
glucocorticoid activity through bind-
ing to the glucocorticoid receptor (22). 
Changes in this structure can result in 
an increase or decrease of specific phar-
macodynamic characteristics. 
Enhancement of glucocorticoid activity 
by variations near the C11 atom leads 
to increased desirable clinical effects, 
such as in
• Prednisolone, in which a double 

bond is inserted between C1 and 
C2,

• Triamcinolone, in which a halogen 
is included, and

• Methylprednisolone or dexametha-
sone, both of which are expanded by 
a methyl or fluoro-group (23).

Adverse effects may be minimised by 
a reduction of the mineralocorticoid 
activity of GCs via variations near 
the C18 atom (e.g. methylation or hy-
droxylation) (23). GCs with an 11-keto 
instead of an 11-hydroxy group, such 
as cortisone and prednisone, are pro-
hormones that must be reduced in the 
liver to their 11-hydroxy configurations 
(22). Cortisone is converted by hepatic 
pathways to cortisol, and prednisone is 
converted to prednisolone, in order to 
become biologically active (22). 
New insights into the mechanisms of 
GC action suggest that endogenous 
glucocorticoids are subject to extensive 
pre-receptor metabolism within target 
cells or tissues (24). 11β-hydroxys-
teroid dehydrogenases (11β-HSDs) 
change the balance between active and 
inactive glucocorticoids (24, 25). Thus, 
11 β-HSD type 1 catalyses the forma-
tion of active cortisol from cortisone, 
whereas 11β-HSD type 2 inactivates 
active glucocorticoids, these processes 
being influenced by local inflammation 
(24, 26, 27). Of note, the solubility, the 
half-life in the plasma and the affinity 
to its receptor also influence the phar-
macodynamics of glucocorticoids (23). 
All effects of glucocorticoids are me-
diated by genomic and non-genomic 
mechanisms of action (10, 11, 21, 28-
33).

Genomic effects are mediated by 
the cytosolic GCR (cGCR)
Glucocorticoids are lipophilic mole-
cules, which easily pass through plasma 
membranes. The glucocorticoid recep-
tor complex, consisting of different 
proteins (29, 30, 32), is found in the 
cytoplasm. Since the first detection of 
the GCR in 1985 (34), a large number 
of receptor variants has been described, 
comprising different lengths of the ami-
no-terminus depending on the starting 
point of translation (35) and different 
post-translational modifications (such 
as phosphorylation or sumoylation) that 
affect the levels of transcriptional activ-
ity (36, 37). 
After binding of the GC to the gluco-
corticoid receptor complex with high 
affinity, the proteins dissociate from 
the complex (30) and the GC/cGCR 
complex translocates into the nucle-
us. There it is able to bind to specific 
DNA binding-sites (30), resulting in 
an induced synthesis of anti-inflam-
matory and regulator proteins (“trans-
activation”, as described above) (2). 
Furthermore, monomers of the GC/
cGCR complex directly or interact in-
directly with transcription factors (via 
“transrepression”, as described above) 
which are involved in the regulation 
of the expression of pro-inflammatory 
proteins (e.g. IL-1, IL-2, IL-6, TNF-α, 
Interferon γ (IFN-γ)) (2, 12, 13, 38-
40).

Rapid, non-genomic effects of 
glucocorticoids
Over the years, effects were recognised 
which occur too quickly to be medi-
ated by the above-mentioned genomic 
mechanism of GC action. Typically, 
significant changes on cellular, tissue 
or organism level become evident after 
hours or days, but if GCs were given 
intravenously or intra-articularly at a 
high dose, rapid clinical effects have 
been observed. These anti-inflamma-
tory and immunosuppressive effects, 
also called rapid, non-genomic effects, 
have been considered to be classifiable 
into three mechanisms of GC action 
(31, 41-44):
• Non-specific interactions of gluco-

corticoids with cellular membranes,
• Non-genomic effects mediated by 

dissociation of the cGCR multi pro-
tein complex, and

• Specific interactions with a mem-
brane-bound GCR (mGCR).

These non-genomic effects are con-
sidered to be clinically important at 
high, very high or pulse doses (pred-
nisone-equivalent >30 mg per day (20). 
At high dosages, GC concentrations 
are achieved which can significantly 
change the physicochemical properties 
of biological membranes, especially 
plasma and mitochondrial membranes, 
resulting in a modification of func-
tion and activity of membrane-associ-
ated proteins (21, 31). Furthermore, 
in immune cells, calcium and sodium 
cycling across the plasma membranes 
is reduced, which in part may account 
for immunosuppression and reduction 
of inflammation (31). ATP produc-
tion, which is essential to immune cells 
(e.g. for cytokine synthesis, migration, 
phagocytosis, antigen processing and 
presentation) also is diminished by in-
hibiting oxidative phosphorylation and 
increasing the mitochondrial proton 
leak (45).
The second class of non-genomic ef-
fects is mediated by proteins which dis-
sociate from cGCR-multiprotein com-
plex after binding of GCs to its recep-
tor. Proteins, such as the co-chaperon 
Src, heat-shock proteins (e.g. Hsp90, 
Hsp70, Hsp56 and Hsp40), immunophi-
lins and kinases of the mitogen-activat-
ed protein kinase (MAPK) signalling 
system are thought to mediate some 
of the rapid effects of glucocorticoids 
(42, 46). Glucocorticoids inhibit the re-
lease of arachidonic acid, an essential 
mediator of cell growth and several 
metabolic/inflammatory reactions. This 
inhibition of arachidonic acid release 
can be blocked by the glucocorticoid 
antagonist RU486 but is insensitive to 
actinomycin D (42, 45). These obser-
vations imply that arachidonic acid re-
lease is not dependent on transcription; 
hence, the cGCR does not only mediate 
genomic effects, but is also involved in 
rapid, non-genomic GC actions. 
The third possibility of non-genomic 
GC effects is the specific interaction 
with membrane-bound glucocorticoid 
receptors (mGCR), the existence of 
which was first described in amphib-
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ian neuronal membranes and in rodent 
lymphoma cells (47, 48). Later, this re-
ceptor was also detected on human pe-
ripheral blood mononuclear cells (21, 
49, 50), and first hints on its clinical 
role were also described (49, 51-53).

Optimised conventional 
glucocorticoids and new drugs
The above-mentioned mechanisms of 
glucocorticoid actions suggest possibil-
ities for the development of optimised 
and/or new glucocorticoids and gluco-
corticoid receptor ligands, including: 
• Conventional GCs can be improved 

by a targeted delivery via carrier 
systems (e.g. long circulating lipo-
somes); by this route, GCs accumu-
late directly at the site of inflamma-
tion (54, 55), 

• GCs can be linked to nitric oxide 
(NO) which can enhance anti-in-
flammatory effects of GCs, while it 
is slowly released from these drugs 
(56-58),

• Selective glucocorticoid recep-
tor agonists (SEGRAs) cause a 
receptor conformation preferring 
GCR/protein interaction rather than 
GCR/DNA binding, which leads to 
induced transrepression processes, 
whereas transactivation remains un-
changed (59-61), and 

• A new, modified-release prednisone 
tablet formulation has been devel-

oped to prevent the circadian in-
crease of proinflammatory cytokine 
levels, thereby improving signs and 
symptoms of rheumatoid arthri-
tis such as the duration of morning 
stiffness (62).

Immunostimulatory effects of gluco-
corticoids at very low concentrations 
also appear of interest for further in-
vestigation (Table I) (24). While high 
concentrations of GCs lead to immu-
nosuppression, concentrations below 
10-7 M (for cortisol) and below 3 x 
10-9 M (for dexamethasone), lead to 
immunostimulation (24, 63). The bidi-
rectional effects of GCs imply that the 
concentration and timing are decisive 
in glucocorticoid administration (24). 
Targeting the pre-receptor metabolism 
of endogenous glucocorticoids, medi-
ated by 11β-HSDs, may have therapeu-
tic potential, with improvement of both 
inflammatory processes and metabolic 
profile (24, 64, 65).
An important general rule to follow for 
conventional GC use in daily clinical 
practice is to prescribe “as much as 
necessary, but as little as possible” (9). 
Nevertheless, all of these substances 
– both the conventional and optimised 
GCs and the novel GCs – may be fur-
ther developed. The most important ap-
proach to optimise the risk-benefit ratio 
of GCs in human subjects for scientists 
is to understand the mechanisms of ac-

tion in more detail, and for clinicians 
to appreciate important differences be-
tween low versus high doses of gluco-
corticoids, administered with optimal 
recognition of chronobiology (see arti-
cle in this supplement by Spies).
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