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Abstract 
Objectives

The aims of this study were to identify candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms of 
RA and generate hypotheses for SNP " gene" pathways. 

Methods
We used a meta-analysis dataset of rheumatoid arthritis (RA) genome-wide association studies (GWAS) which included 
2,554,714 SNPs in 5,539 RA cases and 20,169 controls of European descent. ICSNPathway (Identify candidate Causal 

SNPs and Pathways) analysis was applied to the meta-analysis results of the RA GWAS dataset. 

Results
ICSNPathway analysis identified 49 candidate SNPs included in 37 candidate pathways. The top 5 candidate causal 

SNPs, rs1063478 (p=5.40E-09), rs 375256 (p=3.44E-09), rs365066 (p=3.60E-30), rs2581 (p=2.7E-25), and rs1059510 
(p=2.52E-06) were all at human leukocyte antigen (HLA) loci. These candidate SNPs and pathways provided 22 

hypothetical biological mechanisms. The most strongly associated pathway concerned HLA: rs1063478 alters the role of 
HLA-DMA in the context of the pathway of antigen processing and presentation of peptide antigen. ICSNPathway analysis 
identified two candidate non-HLA SNPs included in ten candidate pathways, which provided two hypothetical biological 
mechanisms. First, rs2476601 alters the role of protein tyrosine phosphatase non-receptor 22 (PTPN22) in the context of 
immune response-activation cell surface receptor signalling pathway, and, rs2230926 alters the role of tumour necrosis 

factor-alpha-induced protein 3 (TNFAIP3) in the context of the CD40L signalling pathway. 

Conclusion
The application of ICSNPathway analysis to the meta-analysis results of RA GWAS datasets indicated candidate SNPs 

and pathways involving HLA-DMA, PTPN22, and TNAIP3 associated with RA susceptibility. 
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Introduction
Rheumatoid arthritis (RA) is a chronic 
inflammatory disease of predominantly 
synovial joints that affects up to 1% of 
the world’s population (1, 2). Although 
the aetiology of RA has not been de-
termined, a genetic component of sus-
ceptibility to RA has been established 
by twin and family studies, which esti-
mated that the heritability of RA liabil-
ity may be as high as 60% (3). Human 
leukocyte antigen (HLA) class II mole-
cules are the most powerful genetic fac-
tors of RA identified to date, but family 
studies suggest that this association ac-
counts for only one-third of genetic sus-
ceptibility, and that non-HLA genes are 
also involved. Genome-wide associa-
tion studies (GWAS) offer a powerful 
means of searching for genes that con-
fer susceptibility to complex diseases 
(4). As a result, the number of GWAS 
being reported is growing rapidly and 
this has led to the discovery and repli-
cation of new disease genes (5). How-
ever, although large-scale GWAS have 
been carried out on complex diseases, 
including RA, much of the genetic 
component of variation in RA remains 
unexplained. 
The increased availability of GWAS 
datasets provides powerful research op-
portunities. Although RA GWAS data 
have shown that the HLA region on 
chromosome 6p plays a key role in RA 
susceptibility, other genes also appear 
to account for the genetic contribution 
to RA susceptibility (6). It appears that 
individual genes and genetic variants 
make small risk contributions by in-
teracting with each other to cause RA. 
However, genetic signals have been 
examined at the single marker level in 
RA GWAS studies, and the biologi-
cal mechanisms identified are contro-
versial. One of the key challenges of 
GWAS data interpretation is to identify 
causative SNPs and to provide evidence 
and hypothetical mechanisms respon-
sible for observed traits (7). Thus, we 
considered that the using of new meth-
ods to study existing GWAS data might 
provide additional biological insights 
and highlight new candidate gene. IC-
SNPathway (Identify candidate Causal 
SNPs and Pathways) analysis was de-
veloped to identify candidate causal 

SNPs and their corresponding candidate 
causal pathways from GWAS data by 
integrating linkage disequilibrium (LD) 
analysis, functional SNP annotation, 
and pathway-based analysis (PBA) (8). 
It combines the analysis of candidate 
SNPs and PBA to generate hypothesis 
of SNP " gene " pathways which in-
dicates that the candidate SNP alters the 
role of its corresponding gene/protein 
in the context of the pathway associated 
with traits (8).
Pathway analysis using meta-analysis 
dataset may increase more statistical 
power than analysis using individual 
data, because meta-analysis of GWAS 
datasets increases power to detect as-
sociation signals by increasing sample 
size and by allowing the examination 
of more variants than individual data-
sets (9). Thus, the objective of this 
study was to identify candidate SNPs 
and candidate mechanisms in RA, and 
to generate SNP to gene to pathway hy-
potheses associated with RA, by apply-
ing ICSNPathway analysis to the meta-
analysis data of RA GWAS datasets. 

Materials and methods
Study populations
The meta-analysis results of RA GWAS 
datasets were used as the data was pub-
licly available at http://www.broadinsti-
tute.org/ftp/pub/rheumatoid_arthritis/
Stahl_et al._2010NG/, and originated 
from the study conducted by Stahl et al. 
(6), which included 2,554,714 SNPs in 
5,539 autoantibody-positive RA cases 
and 20,169 controls of European de-
scent from 6 RA GWAS datasets. De-
tails of the RA GWAS meta-analysis 
performed are included in the Stahl et 
al. paper in Supplementary Fig. 1.

Identification of candidate causal 
SNPs and pathways 
ICSNPathway analysis was applied to 
the RA GWAS meta-analysis results. 
ICSNPathway analysis was conducted 
in two stages (8). The first involved 
the pre-selection of candidate SNPs by 
LD analysis and functional SNP an-
notation based on the most significant 
SNPs in the GWAS. The second stage 
involved the annotation of biological 
mechanisms to the pre-selected can-
didate causal SNPs by using the PBA 
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algorithm, a process referred to as 
improved-gene set enrichment analysis 
(i-GSEA). A full list of GWAS SNP p-
values was inputted for ICSNPathway 
analysis. There are two key concepts 
and one key algorithm applied in IC-
SNPathway. One concept is in LD 
analysis, which searches the SNPs in 
LD with the most significant SNPs of 
GWAS to ensure to capture more pos-
sible candidate causal SNPs based on 
the extended data set which includes 
HapMap data. All SNPs in HapMap 
were included in the first stage. The 
other concept is functional SNPs. ICS-
NPathway pre-selects candidate causal 
SNPs based on functional SNPs, which 
are important for understanding the 
underlying genetics of human health. 
Functional SNPs are defined as SNPs 
that may alter protein, gene expression 
or the role of protein in context of path-
way. The functional SNPs include del-
eterious and non-deleterious non-syn-
onymous SNPs, SNPs leading in gain 
or loss of stop codon, SNPs resulting 
in frame shift, SNPs in essential splice 
site and SNPs in regulatory region. 
The ICSNPathway server implements 
a PBA algorithm, as named improved-
gene set enrichment analysis (i-GSEA), 
on the full list of GWAS SNP p-values 
to detect pathways associated with 
traits. Briefly, 1) each SNP is mapped 
to its nearest gene according to the SNP 
and gene localisation in Ensembl 61 
database (http://www.wnsembl.org/bi-
omart/martview), and the maximum t = 
-log (p-value) of the SNPs mapped to a 
gene is assigned to represent the gene. 
Then all the genes are raked by decreas-
ing their representation value t (2). For 
each pathway S, ES (enrichment score, 
i.e. a Kolmogor-Smirnov like running-
sum statistics with weight [a]) which 
measures the tendency that genes of a 
pathway are located at the top of the 
ranked gene list, is calculated (3). ES 
is converted to SPES (significant pro-
portion based enrichment score) by 
multiplying it to m1/m2, where m1 is the 
proportion of significant genes (defined 
as genes mapped with at least one of 
the top 5% most significant SNPs of all 
SNPs in GWAS) for pathways S, and 
m2 is the proportion of significant genes 
for all the genes in the GWAS (4). SNP 

label permutation and normalisation are 
employed to generate the distribution 
of SPES and to correct gene variation 
(the bias due to different genes with 
different number of mapped SNPs) (5). 
Based on all the distribution of SPESs 
generated by permutation, nominal p-
value is calculated and false discovery 
rate (FDR) is computed for multiple 
testing correction (10). By “the most 
significant SNPs”, it is meant that SNPs 
with p-value below certain threshold. 
We can specify the p-value threshold to 
extract the most significant SNPs from 
the GWAS SNP p-values. ICSNPath-
way drew significant pathways from 
the original GWAS when we chose p-
value (<10-5) threshold. Thus, we used 
p-value (<10-5) as p-value threshold. 
Two parameters were set for this analy-
sis. The first was ‘within gene,’ mean-
ing that only p-values of SNPs located 
within genes were utilised in the PBA 
algorithm, and the second was a false 
discovery rate cutoff (0.05) for multi-
ple testing correction. There were no 
specific criteria to select gene numbers. 
We used the cut-off of minimum 5 and 
maximum 100 to avoid the overly nar-
row or overly broad functional catego-
ries. To avoid stochastic bias or the in-
clusions of general biological process, 
we discarded pathways that contained 
<5 or >100 genes. Although several 
options are available for the annota-
tion of pathways, we chose the Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG) (http://www.genome.jp/kegg/
pathway.html) (11), BioCarta (http://
www.biocarta.com/genes/index.asp)
[12], Gene ontology (GO) (http://www.
geneontolog.org) (level 4 GO terms of 
biological process domain and molecu-
lar function domain) (12), and MSigDB 
(http://www.broadinstitute.org/gsea/
msigdb/index.jsp) (curated GO terms 
of biological process domain and mo-
lecular function domain) to ensure 
comprehensive coverage of pathways 
and to obtain high-quality information 
for well-defined pathways. 
The HLA region encodes proteins of 
classical HLA class I and II genes in ma-
jor histocompatibility complex (HLA) 
and is essential for immune recognition. 
This region is highly polymorphic and 
its LD extends across HLA and non-

HLA genes in the HLA, and thus, this 
region could influence pathway analy-
sis. Several non-HLA loci located in the 
HLA region had variants reported as po-
tential causal variants.  And it remains 
unclear how many independent effects 
actually reside in the HLA region in 
RA. The HLA region is a large area of 
strong LD. When HLA-associated au-
toimmune diseases like RA are studied, 
it is important to adjust for influences 
from the HLA region, given its LD pat-
terns. Therefore, the two analyses were 
performed, with and without the HLA 
region. We defined the HLA region in 
this study as the region on chromosome 
6, from base pair 20,000,000 to base 
pair 40,000,000. 
When a candidate SNP was not present 
on a particular genotyping array, proxy 
SNPs in LD with that candidate SNP 
were identified based on observed LD 
patterns in HapMap. Thus, SNAP, a 
tool used for the identification and an-
notation of proxy SNPs using HapMap, 
was used (13).

Results
Candidate SNPs and pathways 
resulting from the meta-analysis of 
RA GWAS 
ICSN Pathway analysis identified 49 
candidate SNPs included in 37 candi-
date pathways by utilising the 2.554, 
714 GWAS SNP p-values as input 
and the most significant SNPs (p<1 
× 10-5), (Tables I, II and Fig. 1). The 
top 5 candidate causal SNPs were 
rs1063478 (p=5.40E-09), rs375256 
(p=3.44E-09), rs365066 (p=3.60E-30), 
rs2581 (p=2.7E-25), and rs1059510 
(p=2.52E-06), which are all on HLA 
loci. All of the top 5 candidate SNPs, 
except rs1059510, were not in LD with 
any SNP and had genome-wide sig-
nificance. SNP rs1059510, which was 
not represented in the original GWAS 
meta-analysis, is in LD with rs2252745 
(r2=0.92), which did not reach genome-
wide significance in the original GWAS 
meta-analysis (p=2.52E-06). Biological 
mechanisms represent that the candidate 
SNP may alter the role of its correspond-
ing gene/protein in the context of the 
pathway(s) associated with traits. These 
49 candidate SNPs included in 37 candi-
date pathways indicated 22 hypothetical 
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Table I. Candidate SNPs of RA identified in the pathway analysis.

Candidate	 Functional class 	 Gene 	 Candidate	 -log10(p) † 	 In LD with 	 r2 	 D’ 	 -log10(p)‡ 
causal SNP 	  		  causal pathway*	  

rs1063478 	 non-synonymous coding 	 HLA-DMA 	 1 2 10 11 15	 8.268 	 rs1063478 	 – 	 – 	 8.268 
			   22 23 24 33 	  
rs375256 	 non-synonymous coding 	 HLA-DOA 	 1 2 10 11 23 	 8.463 	 rs375256 	 – 	 – 	 8.463 
rs365066 	 non-synonymous coding 	 HLA-DOA 	 1 2 10 11 23 	 29.444 	 rs365066 	 – 	 –	 29.444 
rs2581 	 regulatory region 	 HLA-DOA 	 1 2 10 11 23 	 24.559 	 rs2581 	 – 	 – 	 24.559 
rs1059510 	 non-synonymous coding (deleterious) 	 HLA-E 	 3 	 - 	 rs2252745 	 0.92 	 1.0 	 5.599 
rs2735059 	 non-synonymous coding 	 HLA-F 	 3 	 6.682 	 rs2735059 	 – 	 – 	 6.682 
rs2072895 	 non-synonymous coding&splice site 	 HLA-F 	 3 	 6.676 	 rs2072895 	 – 	 – 	 6.676 
rs915669 	 regulatory region 	 HLA-G 	 3 	 5.209 	 rs915669 	 – 	 – 	 5.209 
rs915668 	 regulatory region 	 HLA-G 	 3 	 10.606 	 rs915668 	 – 	 – 	 10.606 
rs1063320 	 regulatory region 	 HLA-G 	 3 	 10.740 	 rs1063320 	 – 	 – 	 10.740 
rs3763366 	 regulatory region 	 TAP2 	 3 9 27 	 23.851 	 rs3763366 	 – 	 – 	 23.851 
rs4148869 	 regulatory region 	 TAP2 	 3 9 27 	 23.282 	 rs4148869 	 – 	 – 	 23.282 
rs4148876 	 non-synonymous coding 	 TAP2 	 3 9 27 	 17.646 	 rs4148876 	 – 	 – 	 17.646 
rs241448 	 stop_lost 	 TAP2 	 3 9 27 	 6.772 	 rs241448 	 –	 – 	 6.772 
rs241447 	 non-synonymous coding 	 TAP2 	 3 9 27 	 6.857 	 rs241447 	 – 	 – 	 6.857 
rs16870908 	 non-synonymous coding (deleterious) 	 TAP2 	 3 9 27 	 37.236 	 rs16870908 	 – 	 – 	 37.236 
rs2071888 	 non-synonymous coding (deleterious) 	 TAPBP 	 3 9 	 10.117 	 rs2071888 	 – 	 – 	 10.117 
rs1041981 	 non-synonymous coding 	 LTA 	 4 17 	 3.867 	 rs2071592 	 0.917 	 0.957 	 7.156 
rs2229699 	 non-synonymous coding 	 LTB 	 4 5 19 	 - 	 rs12215563 	 1.0 	 1.0 	 6.472 
rs4645843 	 non-synonymous coding (deleterious) 	 TNF 	 6 8 12 17 19	 - 	 rs6903496 	 1.0 	 1.0 	 6.201 
			   21 28 32 35 	  
rs6472 	 non-synonymous coding 	 CYP21A2 	 7 	 18.419 	 rs6472 	 – 	 – 	 18.419 
rs6474 	 frameshift coding 	 CYP21A2 	 7 	 108.359 	 rs6474 	 – 	 – 	 108.359 
rs7887 	 non-synonymous coding 	 EHMT2 	 13 	 67.967 	 rs7887 	 – 	 – 	 67.967 
rs2157678 	 regulatory region 	 TRIM15 	 14 	 1.788 	 rs1015466 	 0.837 	 1.0 	 5.921 
rs929156 	 non-synonymous coding 	 TRIM15 	 14 	 27.979 	 rs929156 	 – 	 – 	 27.979 
rs8192583 	 non-synonymous coding 	 NOTCH4 	 14 29 	 13.318 	 rs8192583 	 – 	 – 	 13.318 
rs8192585 	 non-synonymous coding 	 NOTCH4 	 14 29 	 33.403 	 rs8192585 	 – 	 – 	 33.403 
rs8192579 	 non-synonymous coding (deleterious) 	 NOTCH4 	 14 29 	 13.350 	 rs8192579 	 – 	 – 	 13.350 
rs8192591 	 non-synonymous coding 	 NOTCH4 	 14 29 	 10.395 	 rs8192591 	 – 	 – 	 10.395 
rs397081 	 regulatory region 	 NOTCH4 	 14 29 	 19.900 	 rs397081 	 – 	 – 	 19.900 
rs422951 	 non-synonymous coding (deleterious) 	 NOTCH4 	 14 29 	 12.648 	 rs422951 	 –	 –	 12.648 
rs915894 	 stop gained 	 NOTCH4 	 14 29 	 7.452 	 rs915894 	 – 	 – 	 7.452 
rs2476601 	 non-synonymous coding (deleterious) 	 PTPN22 	 16 20 23 	 70.206 	 rs2476601 	 – 	 – 	 70.206 
rs805299 	 regulatory region 	 APOM 	 18 	 56.750 	 rs805299 	 – 	 – 	 56.750 
rs9332739 	 non-synonymous coding 	 C2 	 25 26 30 	 13.510 	 rs9332739 	 – 	 – 	 13.510 
rs4151667 	 non-synonymous coding (deleterious) 	 CFB 	 25 	 14.203 	 rs4151667 	 – 	 – 	 14.203 
rs1057373 	 regulatory region 	 TAP1 	 27 	 5.517 	 rs1057373 	 – 	 – 	 5.517 
rs2071543 	 non-synonymous coding (deleterious) 	 PSMB8 	 31 	 27.595 	 rs2071543 	 –	 – 	 27.595 
rs241419 	 non-synonymous coding (deleterious) 	 PSMB9 	 31 	 15.297 	 rs241419 	 – 	 – 	 15.297 
rs28399977 	 non-synonymous coding (deleterious) 	 MSH5 	 34 	 - 	 rs9267536 	 1.0 	 1.0 	 5.876 
rs707938 	 non-synonymous coding 	 MSH5 	 34 	 5.129 	 rs707938 	 – 	 – 	 5.129 
rs2607015 	 non-synonymous coding 	 VARS 	 36 	 49.924 	 rs2607015 	 – 	 – 	 49.924 
rs437179 	 non-synonymous coding 	 SKIV2L 	 37 	 20.975 	 rs437179 	 – 	 –	 20.975 
rs3911893 	 non-synonymous coding 	 SKIV2L 	 37 	 7.740 	 rs3911893 	 – 	 – 	 7.740 
rs449643 	 non-synonymous coding (deleterious) 	 SKIV2L 	 37 	 17.614 	 rs449643 	 – 	 – 	 17.614 
rs438999 	 non-synonymous coding 	 SKIV2L 	 37 	 38.775 	 rs438999 	 – 	 – 	 38.775 
rs106287 	 non-synonymous coding (deleterious) 	 SKIV2L 	 37 	 26.281 	 rs106287 	 – 	 – 	 26.281 
rs2071596 	 non-synonymous coding  	 BAT1 	 37 	 14.271 	 rs2071596 	 – 	 – 	 14.271 
rs2523512 	 non-synonymous coding 	 BAT1 	 37 	 8.697 	 rs2523512 	 – 	 – 	 8.697 

SNP: single nucleotide polymorphism; RA: rheumatoid arthritis; LD: linkage disequilibrium.
*Numbers indicate the indexes of pathways, which are ranked by statistical significance (false discovery rate). 
†-log10(p) for candidate causal SNP in original genome-wide association studies (GWAS). '–' denotes that this SNP was not represented in the original GWAS 
meta-analysis. 
‡-log10(p) for the SNP (which the candidate causal SNP is in LD with) in the original GWAS meta-analysis.
ICSNPathway analysis identified 49 candidate SNPs included in 37 candidate pathways. The top 5 candidate causal SNPs were rs1063478 (p=5.40E-09), rs 
375256 (p=3.44E-09), rs365066 (p=3.60E-30), rs 2581 (p=2.7E-25), and rs1059510 (p=2.52E-06), which are all on HLA loci.
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biological mechanisms. For example, 
rs1063478 alters the role of HLA-DMA 
in the context of the pathways of antigen 
processing and presentation of exoge-
nous peptide antigen, antigen processing 
and presentation of peptide antigen via 
HLA class II, regulation of lymphocyte 
differentiation, regulation of lympho-
cyte activation, positive regulation of 
lymphocyte differentiation, lymphocyte 
mediated immunity, lymphocyte differ-
entiation, adaptive immune response, 

and positive regulation of lympho-
cyte activation. Rs375256, rs365066, 
rs2581"HLA-DOA"antigen process-
ing and presentation of exogenous pep-
tide antigen, antigen processing and 
presentation of peptide antigen via HLA 
class II, regulation of lymphocyte differ-
entiation, regulation of lymphocyte ac-
tivation, and lymphocyte differentiation. 
Rs1059510"HLA-E"antigen proces-
sing and presentation of peptide antigen 
via HLA class I (Tables I, II). 

Candidate SNPs and pathways after 
excluding HLA region 
We additionally performed the pathway 
analysis without HLA region to adjust 
for influences from the HLA region, 
given its LD patterns. ICSNPathway 
analysis identified two candidate non-
HLA SNPs included in ten candidate 
pathways (Tables III, IV and Fig. 1). 
SNP rs2476601, which had genome-
wide significance in the original GWAS 
meta-analysis, is not in LD with any 

Table II. Candidate pathways of RA identified in the pathway analysis.
					   
Index  	 Candidate causal pathway 	 Description 	 Nominal p-value 	 FDR 

1 	 Antigen processing and presentation of exogenous peptide antigen 	 GO:0002478	 <0.001 	 <0.001 
2 	 Antigen processing and presentation of peptide antigen via HLA class II 	 GO:0002495	 <0.001 	 <0.001 
3 	 Antigen processing and presentation of peptide antigen via HLA class I 	 GO:0002474	 <0.001 	 <0.001 
4 	 Lymph node development 	 GO:0048535 	 <0.001 	 <0.001 
5 	 Interleukin-12 biosynthetic process 	 GO:0042090	 <0.001 	 <0.001 
6 	 Positive regulation of translational initiation 	 GO:0045948	 <0.001 	 0.001 
7 	 C21-Steroid hormone biosynthetic process 	 GO:0006700	 <0.001 	 0.002 
8 	 mspPathway 	 Msp/Ron receptor	 0.003 	 0.002 
		  signalling pathway 	  
9 	 HLA protein binding 	 GO:0042287 	 0.001 	 0.004 
10 	 Regulation of lymphocyte of differentiation 	 GO:0045619	 <0.001 	 0.005 
11 	 Regulation of lymphocyte activation 	 GO:0051249	 <0.001 	 0.010 
12 	 Positive regulation of cellular biosynthetic process 	 GO:0031328 	 <0.001 	 0.010 
13 	 Spermatid differentation 	 GO:0048515 	 <0.001 	 0.011 
14 	 Cell_Fate_commitment 	 GO:0045165 	 <0.001 	 0.012 
15 	 Positive regulation of lymphocyte differentiation 	 GO:0045621 	 0.001 	 0.015 
16 	 Immune response-activating cell surface receptor signalling pathway 	 GO:0002429 	 <0.001 	 0.015 
17 	 cytokinePathway 	 Cytokine network	 0.009 	 0.016 
		  cytokine network 	  
18 	 Lipid transporter activity 	 GO:0005319	 <0.001 	 0.021 
19 	 Positive regulation of cytokine biosynthetic process 	 GO:0042108	 0.001 	 0.027 
20 	 Immune response-regulating signalling pathway 	 GO:0002764	 0.002 	 0.028 
21 	 il10Pathway 	 IL-10 anti-inflammatory	 0.005 	 0.032 
		  signalling pathway 	  
22 	 Lymphocyte  mediated immunity 	 GO:0002449	 <0.001 	 0.032 
23 	 Lymphocyte differentiation 	 GO:0030098	 <0.001 	 0.032 
24 	 Adaptive immune response 	 GO:0002460 	 0.001 	 0.032 
25 	 Complement activation, alternative pathway 	 GO:0006957	 0.004 	 0.034 
26 	 lectinPathway 	 Lectin induced 
		  complement pathway 	 0.003 	 0.035 
27 	 hsa05340 	 Primary immunodeficiency 	 0.003 	 0.035 
28 	 hsp27Pathway 	 Stress induction of HSP 
		  Regulation 	 0.009 	 0.036 
29 	 hsa04330 	 Notch signalling pathway 	 <0.001 	 0.038 
30 	 Adaptive immune response 	 GO:0002250 	 0.005 	 0.039 
31 	 Negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 	 GO:0051436	 0.007 	 0.039 
32 	 Positive regulation of translation 	 GO:0045727 	 0.016 	 0.040 
33 	 Positive regulation of lymphocyte activation 	 GO:0051251 	 0.001 	 0.042 
34 	 Meiotic cell cycle 	 GO:0051321 	 0.002 	 0.043 
35 	 Negative regulation of cytokine secretion 	 GO:0050710 	 0.027 	 0.044 
36 	 Ligase activity forming carbon oxygen bonds 	 GO:0016875 	 0.008 	 0.044 
37 	 RNA helicase activity 	 GO:0003724 	 0.017 	 0.049

RA: rheumatoid arthritis; FDR: false discovery rate.
ICSNPathway analysis identified 49 candidate SNPs included in 37 candidate pathways. The pathway analysis does not replace the GWAS meta-analysis 
results, but plays a complementary part in identifying novel candidate genes or sets of genes. The results for pathway association approaches may lead to 
the formulation of new hypotheses for additional validations.  
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Fig. 1. Regional LD plots of the rs2476601 (PTPN22) (A) and rs2230926 (TNFAIP3) (B) SNPs. SNPs are plotted along with their proxies (based on HAP-
MAP CEU) as a function of genomic location, annotated by the recombination rate across the locus (light-blue line). On the y-axis, pairwise r2 values are 
given for each proxy SNP using colour codes. 



572

Pathway-based analysis and RA / G.G. Song et al.

SNP (p=6.22E-71) (Fig. 1). Rs2230926, 
which was not represented in the origi-
nal GWAS meta-analysis, is in LD 
with rs9494895 (r2=1.0), which did 
not reach genome-wide significance in 
the original GWAS (p=1.26E-07) (Fig. 
1). Proxy SNPs in LD with that candi-
date SNP were identified based on ob-
served LD patterns in HapMap. SNPs 
are plotted along with their proxies 
(based on HAPMAP CEU) as a func-
tion of genomic location, annotated by 
the recombination rate across the locus 
(light-blue line) in Figure 1. 
These two candidate non-HLA SNPs 
identified in ten candidate pathways 
provided two hypothetical biological 
mechanisms. First, rs2476601 alters 
the role of protein tyrosine phosphatase 
non-receptor 22 (PTPN22) in the con-
text of the pathways of immune re-
sponse-activation cell surface receptor 
signalling pathway, immune response-
regulating signalling pathway, lympho-
cyte differentiation, protein tyrosine 
phosphatase activity, protein amino acid 
dephosphorylation, dephosphorylation, 
phosphoprotein phosphatase activity. 

Second, rs2230926 alters the role of 
tumour necrosis factor, alpha-induced 
protein 3 (TNFAIP3) in the context of 
the pathways of regulation of I_kappaB 
kinase NF kappaB cascase, I kappaB 
kinase NF kaappaB cascase, and the 
CD40L signalling pathway (Tables III 
and IV). Other causal variants of the 
TNFAIP3 have been described that are 
not within the coding region. One op-
tion used for this analysis was ‘within 
gene’, meaning that p-values of SNPs 
located within genes were utilised in 
the PBA algorithm. The PTPN22 result 
identified in this pathway analysis is not 
novel and has been known since before 
the GWAS era began.

Discussion
GWAS have been used successfully to 
identify novel common genetic vari-
ants that contribute to susceptibility to 
complex diseases (4). However, indi-
vidual GWAS are limited in terms of 
the identification of new loci, because 
a limited set of variants are genotyped, 
and because the reported variant is un-
likely to be the causal variant, rather 

it is more likely to be in LD with rel-
evant variants. Reported loci are those 
that reach a certain stringent statistical 
“genome-wide” significance criterion, 
whereas hundreds of thousands of other 
genotyped markers have received lit-
tle attention. However, multiple related 
genes in the same pathway may work 
together to confer disease susceptibil-
ity, and some of these genes may not 
reach genome-wide significance in any 
single GWAS. Thus, combined analy-
sis of GWAS, extremely large GWAS, 
or PBA is required to identify new loci 
that leading to susceptibility to complex 
diseases (9, 14). Furthermore, combin-
ing results from multiple GWAS data-
sets may strengthen previous identified 
loci and suggest new disease loci or 
pathways. 
It is well known RA is caused by inter-
actions between multiple genetic fac-
tors and environmental factors, and that 
a complex molecular network and dif-
ferent cellular pathways play key roles 
in development of RA (15). If a spe-
cific pathway is relevant to disease sus-
ceptibility, association signals would 

Table III. Candidate SNPs of RA after excluding HLA region.

Candidate 	 Functional class 	 Gene 	 Candidate causal	 -log10(p) † 	 In LD with 	 r2 	 D’ 	 -log10(p-value)‡

causal SNP 	  		  pathway*	  

rs2476601 	 non-synonymous coding (deleterious) 	 PTPN22 	 1 2 3 5 7 8 10 	 70.206 	 rs2476601 	 – 	 – 	 70.206 

rs2230926 	 non-synonymous coding 	 TNFAIP3 	 4 6 9 	 – 	 rs9494895 	 1.0 	 1.0 	 6.900 

SNP: single nucleotide polymorphism; HLA: human leukocyte antigen; RA: rheumatoid arthritis; LD: linkage disequilibrium.*Numbers indicate the indexes 
of pathways, which are ranked by statistical significance (false discovery rate). †-log10(p) for candidate causal SNP in original genome-wide association stud-
ies (GWAS). ‘–’ denotes that this SNP was not represented in the original GWAS meta-analysis. ‡-log10(p) for the SNP (which the candidate causal SNP is 
in LD with) in the original GWAS meta-analysis.ICSNPathway analysis identified two candidate SNPs included in ten candidate pathways after excluding 
HLA region. 		

Table IV. Candidate pathways of RA after excluding HLA region.
					   
Index	 Candidate causal pathway	 Description	 Nominal p-value	 FDR

1	 Immune response-activating cell surface receptor signalling pathway	 GO:0002429	 <0.001	 <0.001
2	 Immune response-regulating signalling pathway	 GO:0002764	 <0.001	 <0.001
3	 Lymphocyte differentiation	 GO:0030098	 <0.001	 <0.001
4	 Regulation of I kappaB kinase NF kappaB cascade	 GO:0043122	 <0.001	 <0.001
5	 Protein tyrosine phosphatase activity	 GO:0004725	 <0.001	 <0.001
6	 I kappaB kinase NF kappaB cascade	 GO:0007249	 0.001	 <0.001
7	 Protein amino acid dephosphorylation	 GO:0006470	 0.006	 0.011
8	 Dephosphorylation	 GO:0016311	 0.008	 0.018
9	 cd40Pathway	 CD40L signalling pathway	 0.013
	 Genes and SNPs in the pathway	 CD40L signalling pathway		  0.021
10	 Phosphoprotein phosphatase activity	 GO:0004721	 0.015	 0.022

HLA: human leukocyte antigen; RA: rheumatoid arthritis; FDR: false discovery rate.
ICSNPathway analysis identified two candidate SNPs included in ten candidate pathways after excluding HLA region. The pathway analysis does not 
replace the GWAS meta-analysis results, but plays a complementary part in identifying novel candidate genes or sets of genes. The results for pathway       
association approaches may lead to the formulation of new hypotheses for additional validations.
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be expected to be overrepresented for 
the SNPs in genes in the pathway (16). 
Given the limited power of GWAS 
to detect single SNP associations, we 
adopted a pathway-based approach. 
Pathway-driven approaches are more 
powerful, as they take into account bio-
logical interplay among genes, and are 
attractive as they provide insight as to 
how multiple genes might contribute to 
the pathogeneses of diseases (17).
In the present study, we identified 49 
candidate SNPs included in 37 can-
didate pathways associated with RA. 
Furthermore, the top 5 candidate SNPs 
were all at HLA loci. These candidate 
SNPs and pathways indicated 22 hy-
pothetical biological mechanisms. In 
this genome-wide search for pathways 
associated with RA, the most strongly 
associated pathway related to antigen 
processing and presentation of peptide 
antigen via HLA class II. This result 
was consistent with the well-known 
role of HLA in the pathogenesis of 
RA (15). The most significant SNP " 
gene " hypothesis was as follows: 
rs1063478 " HLA-DMA " antigen 
processing and presentation of peptide 
antigen via HLA class II, regulation of 
lymphocyte differentiation and activa-
tion, and adaptive immune response. 
When we excluded the HLA region, IC-
SNPathway analysis identified two can-
didate SNPs identified in ten candidate 
pathways, which provided two hypo-
thetical biological mechanisms. First, 
rs2476601 alters PTPN22 in the context 
of the pathway of immune response-ac-
tivation cell surface receptor signalling 
pathway, lymphocyte differentiation, 
protein tyrosine phosphatase activity, 
protein amino acid dephosphorylation, 
phosphoprotein phosphatase activity. 
Second, rs2230926 alters TNFAIP3 in 
the context of the pathway of regulation 
of I kappaB kinase NF kappaB cascase, 
and CD40L signalling pathway. 
It is well known that PTPN22 and 
TNFAIP3 play key roles in susceptibil-
ity to RA (18, 19). The two hypotheses 
derived by GWAS data interpretation 
using ICSNPathway analysis mentioned 
above are well supported by experi-
mental evidence. The 1858C"T SNP 
of PTPN22 (rs2476601) is one of the 
best examples of a non-HLA common 

susceptibility allele for autoimmunity 
(20, 21). The PTPN22 gene maps to 
chromosome 1p13.3-p13.1 and encodes 
a lymphoid-specific phosphatase (Lyp). 
Lyp is an intracellular PTP, and physi-
cally binds via its proline-rich motif to 
the SH3 domain of Csk kinase, which 
is an important suppressor of kinases 
that mediate T cell activation (22). The 
PTPN22 1858C->T SNP changes the 
amino acid at position 620 from an 
arginine (R) to a tryptophan (W), dis-
rupts the interaction between Lyp and 
Csk, and thus, inhibits complex forma-
tion and suppresses T cell activation. In 
vitro experiments have shown that the T 
allele of PTPN22 binds less efficiently 
to Csk than the C allele, which suggests 
that T cells expressing the T allele may 
be hyperresponsive, and that conse-
quently, individuals carrying this allele 
may be prone to autoimmunity (23, 24). 
Actually, a meta-analysis conducted by 
Lee et al. (25) showed that the PTPN22 
C1858T polymorphism is associated 
with RA susceptibility in Europeans. 
TNFAIP3 encodes ubiquitin-editing 
protein A20, which is an inhibitor of 
nuclear factor kappa B (NF-ĸB) activity 
in several signalling pathways, includ-
ing those of TNF and Toll-like recep-
tors (26). Furthermore, A20-deficient 
mice were found to show systematic in-
flammation, damage involving kidneys 
and joints, and to develop autoimmun-
ity (27). TNFAIP3 participates in the 
negative regulation of inflammatory 
responses, and alterations in the activ-
ity or expression of TNFAIP3-encoded 
A20 may influence the pathogenesis of 
RA (28). The TNFAIP3 gene (located 
at 6q23) is known to be associated with 
susceptibility to multiple autoimmune 
diseases (29). In particular, rs2230926 
is located in the coding region of 
TNFAIP3 and an amino acid substitu-
tion of Phe to Cys at position 127 in the 
ovarian tumour domain has been sug-
gested to play a role in the inhibitory 
function of A20 (30). Furthermore, the 
Cys127 allele product has been report-
ed to be modestly less effective at in-
hibiting NF-ĸB activation by TNF than 
the Phe127 allele product (31), and as-
sociations between TNFAIP3 polymor-
phisms and RA have been reported in 
different ethnic groups (19). 

The original meta-analysis identified 
previous known SNPs associated with 
RA, including HLA loci, PTPN22, and 
TNFAIP3 (6). Our pathway analysis us-
ing the meta-analysis dataset confirmed 
HLA, PTPN22, and TNFAIP3 as candi-
date genes of RA. The individual SNPs 
identified in this pathway analysis were 
different from the SNPs observed in the 
meta-analysis, but genes in genuinely 
associated pathways were consistently 
associated in the meta-analysis results. 
In order to solve the challenge presented 
by GWAS data interpretation, pathway-
based approaches, such as, ICSNPath-
way analysis, were developed (8). How-
ever, there is no straightforward way of 
comparing various pathway analysis 
methods against each other. The in-
complete annotation of the human ge-
nome is an important limitation of the 
pathway-based approach for GWAS 
analysis. ICSNPathway analysis is not 
intended to predict true causal SNPs and 
pathways due to limited understanding 
of their genetic basis in complex dis-
eases (8). A proportion of human genes 
remain uncharacterised, and thus, these 
genes have not been mapped to pre-
dicted pathways. Pathway analysis for 
GWAS data is not well developed, and 
thus, results should be interpreted with 
caution. Additional studies are needed 
to confirm the causal SNPs and genes 
underlying the association of pathways 
with RA identified during the present 
study. Nevertheless, pathway-based ap-
proaches play a complementary role in 
the identification of novel genes that 
confer disease susceptibility. Thus, the 
results obtained in the present study us-
ing ICSNPathway analysis may result in 
the formulation of new hypotheses for 
additional validations.

Conclusion
Summarising, we examined the meta-
analysis GWAS results of 6 RA GWAS 
datasets to identify genetic associations 
with RA at both the SNP and pathway 
levels. Pathway analysis indicated can-
didate SNPs and genes identified in the 
pathways involving HLA, PTPN22, 
and TNAIP3 associated with RA sus-
ceptibility. Further studies are needed 
to confirm and explore the genetic vari-
ations of molecular pathways in RA.
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