
779

Solvo Biotechnology, Budaörs, Hungary.
János Márki-Zay, MD, PhD
Katalin Tauberné Jakab, MD
Peter Krajcsi, PhD
Peter Szeremy, MSc
Please address correspondence to: 
Dr Peter Krajcsi, 
Solvo Biotechnology, 
Gyár u. 2, 
2040 Budaörs, Hungary.
E-mail: krajcsi@solvo.com
Received on November 28, 2012; accepted 
in revised form on February 5, 2013.
Clin Exp Rheumatol 2013; 31: 779-787.
© Copyright Clinical and 
Experimental Rheumatology 2013.

Key words: ABC transporters, BCRP, 
biomarker, calcein assay, rheumatoid 
arthritis, diagnostics, inflammation, 
MRP1, P-glycoprotein

Funding: this work was supported by 
the following Hungarian grants: 
XTTPSRT1, OM-00230/2005, IVDMDQ08, 
OM-00139/2008, TUDAS-1-2006-0029, 
OMFB-00505/2007.
Competing interests: none declared.

ABSTRACT
MDR-ABC transporters are widely ex-
pressed in cell types relevant to patho-
genesis of rheumatoid arthritis. Many 
reports demonstrate the interaction of 
small molecule drugs with MDR-ABC 
transporters. Cell-based assays for 
disease relevant cell types can be easi-
ly gated and could reveal specific drug 
targets and may increase significance 
and utilisation of data in clinical prac-
tice. Many commonly used DMARDs 
(e.g. methotrexate, sulfasalazine, leflu-
nomide/teriflunomide, hydroxychloro-
quine) are ABCG2 substrates. Conse-
quently, the activity of this transporter 
in patients should be determined to un-
derstand the disposition and pharma-
cokinetics of the therapy. In addition, 
MDR-ABC transporters transport a va-
riety of endobiotics that play important 
roles in cell proliferation, cell migra-
tion, angiogenesis and inflammation. 
Therefore, MDR-ABC transporters are 
important biomarkers in rheumatoid 
arthritis.

Introduction
Rheumatoid arthritis (RA) is one of the 
most common chronic inflammatory 
autoimmune diseases and affects about 
0.5–1% of the world population. The 
disorder is characterised by pain and 
swelling of the symmetrical joints. As 
a consequence of widespread inflam-
mation the function of other organs and 
tissues such as the heart, the lung and 
the blood vessels are impaired as well. 
The trigger of pathogenesis of RA is 
still obscure. The pathophysiology of 
RA involves interactions of innate and 
adaptive immune systems. Cells par-
ticipating in pathogenesis are the va-lid 
cellular targets for small molecule ther-
apy. Interplay of T cells and B cells de-
termines the autoimmune process lead-
ing to inflammation and destruction 
of affected joints. During this process 
the Th1/Th2 and Th17/Treg balance 
becomes shifted towards formation of 

the inflammatory Th1 and autoreac-
tive Th17 cells (1). These cell subsets 
then produce various inflammatory cy-
tokines upon interaction with antigen 
presenting cells. Th1 cells activate the 
B cells to produce auto-antibodies (e.g. 
rheumatoid factor (RF), anti-citrullinat-
ed protein antibodies (ACPA) (2). Acti-
vated B cells differentiate into plasma 
cells that produce large quantities of 
these antibodies. Importance of B cells 
is substantiated by the therapeutic effi-
cacy of rituximab, the anti CD-20 anti-
body that efficiently deletes B cells (3). 
The other cellular targets of two T cell 
subsets (Th1, Th17) are macrophages 
in the synovial tissue. Macrophages 
contribute to abundance of inflamma-
tory cytokine, tumour necrosis factor 
(TNF) in the synovium (4). The T cell 
macrophage interaction is mediated via 
secreted cytokines interferon (IFN)-
gamma and interleukin (IL)-17).  IL-17 
plays a major role in tissue destruction 
as this cytokine activates fibroblast-like 
synoviocytes (FLS) and osteoclasts, 
two effector cell types secreting matrix 
metalloproteases and invading cartilage 
(5). FLS express both IL-15 and IL-15 
receptor (IL-15R), therefore they may 
proliferate in an autocrine manner (6). 
Activation of polymorphonuclear leu-
kocytes in RA exacerbates inflamma-
tion due to production of prostaglan-
dins and leukotrienes as well as direct 
tissue damage via released lysosomal 
enzymes and superoxide anions (7).

Small molecular anti-rheumatoid 
drugs and their cellular targets
Due to clinical diagnostic limitations, 
therapy resistance can only be defined 
by lack of clinical response. In order to 
develop drugs or improve diagnostic 
precision and sensitivity the resistance 
and response must be defined at a cel-
lular level. Resistance often arises at 
the level of the molecular target. For 
some drugs commonly used in RA such 
as gold, antimalarials and sulfasalazine 
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primary molecular targets are not well 
defined, although, toll-like receptors 
(TLR), particularly TLR9 have been 
suggested to mediate some of the ef-
fects of antimalarials (8). For drugs 
where primary molecular targets are 
known, such as glucocorticoids, metho-
trexate, leflunomide and cyclosporine 
A, the pharmacogenomics data linking 
genotype with response are rare. The 
-317AA genotype (-317G>A, rs408626) 
of dihydrofolate reductase (DHFR) the 
primary target of methotrexate was 
linked with less favourable response to 
the drug (9). A 19 bp deletion in DHFR 
(rs70991108) has been associated with 
increased methotrexate hepatotoxic-
ity in acute lymphoblastic leukaemia 
(ALL) patients (10). No data have been 
published on the effect of polymor-
phism on therapeutic response to meth-
otrexate in RA despite the observed 
high allelic frequency of this 19 bp de-
letion in the Japanese population (11). 
Glucocorticoid receptor (GR) polymor-
phism 1220A>G (rs6195) (12, 13) that 
leads to an amino acid change (N363S) 
and polymorphism BclI (rs41423247) 
(14) that leads to a C>G substitution in 
intron 2 are associated with hypersen-
sitivity to glucocorticoids. However, 
the ER22/23EK (198G>A (rs6189) 
and 200G>A (rs6190)) (15, 16) poly-
morphism and  the 9beta (rs6198) (17) 
polymorphism (an A>G change in the 
3’ untranslated region (UTR) leading to 
stabilisation of GR) are associated with 
resistance to glucocorticoids. Interest-
ingly, carriers of the polymorphisms 
associated with glucocorticoid resist-
ance are predisposed to develop RA 
(18). Conversely, carriers of polymor-
phism associated with glucocorticoid 
hypersensitivity are less susceptible to 
develop RA (18). Nonetheless, associa-
tion of the above variants with clinical 
response to corticosteroid treatment in 
RA has not been convincingly shown. 
In regard to cyclosporine A and tacroli-
mus, calcineurin is the most important 
primary molecular target in T cells (19), 
synoviocytes (20), and osteoclast pre-
cursors (21). Calcineurin variants have 
been mapped (22), but association with 
response to cyclosporine A or tacroli-
mus in RA patients has not been stud-
ied. Leflunomide is thought to impair 

de novo synthesis of pyrimidine nucle-
otides via inhibition of dihydroorotate 
dehydrogenase (DHODH) (23) a mech-
anism shown to be effective in T cells 
(24). The C19 variant (rs3213422) of 
DHODH was associated with increased 
frequency of remission in RA patients 
(25). As the effect of this polymorphism 
on DHODH activity is not known, a 
mechanistic linkage of drug response to 
polymorphism is not justified. In addi-
tion, many of the latter drugs have pro-
found effects on cytokine release and 
antibody production that is not neces-
sarily linked to the primary target (26, 
27). Moreover, many other effects such 
as inhibition of proliferation and induc-
tion of apoptosis also manifest at the 
cellular level. Therefore, effects of anti-
rheumatic drugs can be better defined 
and tested at the cellular level. 
Glucocorticoids induce apoptosis of 
activated T cells which are considered 
their main cellular therapeutic targets 
(28) in RA. T cells are also targets of an-
tiproliferative activities of leflunomide 
(29) and gold (30) as well as cytokine 
production suppressive activities of 
methotrexate, cyclosporine A (19) and 
sulfasalazine (31). B cells are also tar-
gets of anti-rheumatic drugs. The gold 
compounds, gold sodium thiomalate 
and auranofin inhibit B-cell activation 
(32) whereas methotrexate (33) and 
sulfasalazine inhibit antibody produc-
tion (34). Teriflunomide, the active me-
tabolite of leflunomide may also have a 
direct effect on B cells (35), although a 
T cell dependent effect is likely more 
significant (24). Similarly, cyclo-
sporine A, azathioprine (36) and gluco-
corticoids (37) exert their effect on an-
tibody production through modulation 
of T cell function. The third major cell 
type involved in the pathogenesis of 
RA is the monocyte-macrophage line-
age that includes osteoclasts. Multiple 
studies employing peripheral mono-
cytes or cells derived from synovium 
have shown macrophages as targets 
for different small molecule anti-rheu-
matic drugs. Gold compounds (38, 39), 
hydroxychloroquine (40), leflunomide 
(41), cyclosporine A (42), sulfasalazine 
(43) and glucocorticoids (44) inhibit 
cytokine release by macrophages. It 
is generally thought that most of these 

effects are mediated through inhibition 
of the nuclear factor kappa beta (NF-
κB) (45, 46) pathway. Furthermore, 
methotrexate (45), sulfasalazine, teri-
flunomide (41), gold (39), cyclosporine 
A but not hydroxychloroquine (45) 
inhibited osteoclast formation and/or 
function. Glucocorticoids, on the con-
trary, increase osteoclast formation 
(47). Finally, glucocorticoids (48, 49), 
gold compounds (48), sulfasalazine 
(50), methotrexate, cyclosporine A 
and hydroxychloroquine (51) all sup-
pressed some of the activities of FLS. 
Data on teriflunomide are controversial 
as inhibition (52, 53) as well as poten-
tiation (54) of FLS mediated cytokine 
secretion has been published. A recent 
article (55) reviewed human synovial 
tissue response to small molecular 
drugs. The number of CD68+ mac-
rophages in the synovium significantly 
decreased upon treatment with gluco-
corticoids (56), gold (57), methotrex-
ate and leflunomide (58). Decreased T 
cells in the synovium of patients treated 
with prednisolone or methotrexate was 
also shown (56). The only study show-
ing decreased synovial B cell content 
measured CD5+ cells that include T 
cells (56). These data show that most 
drugs have multiple cellular targets and 
that cellular assays are feasible in vitro 
models to test drug response.  
	
The concept of multidrug resistance
The concept of multidrug resistance 
(MDR) has significantly changed over 
the past decade. The original concept 
was based on the observation made 
in Victor Ling’s lab – demonstrating 
pleiotropic resistance in cells selected 
for colchicine resistance (59). The pro-
tein responsible for the phenotype was 
named permeability-glycoprotein (P-
gp) as it appeared to affect membrane 
permeability of drugs. The gene was 
cloned 10 years later and termed mdr1 
(60). The systemic name, ABCB1 is 
now used for this transporter. It was 
later shown that overexpression of oth-
er efflux transporters, such as ABCC1/
MRP1 (61, 62) and ABCG2/BCRP/
MXR (63) also play a role in clinical 
MDR. Multiple studies have linked 
overexpression of MDR-ABC trans-
porters with MDR using various clini-
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cal parameters. However, due to the 
failure of development of ABC trans-
porter inhibitors overcoming MDR to 
chemotherapy in malignancies, ABC 
transporters are still considered unvali-
dated therapeutic targets for conquer-
ing MDR (64). Part of the reason for 
this failure may be inherent toxicity 
and inadequate trial design and sys-
temic PK interactions (65).
Although the MDR phenomenon was 
firstly described in tumour cells, MDR-
ABC transporters have been identified 
in many normal tissues including im-
mune cells as part of a mechanism of 
the resistance to antiviral (66) and im-
munosuppressive (67) therapies.
ABC transporters have been linked to 
transport of a variety of endobiotics and 
implicated in various processes of can-
cer development such as proliferation, 
metastasis, inflammation and stem cell 
survival (68). Such endobiotics secret-
ed by the MDR transporters play im-
portant roles in inflammatory response 
due to the differentiation, proliferation 
and maturation of immune cells as well 
as in their migration into the inflamed 

tissues (69). ABCB1 not only transports 
hydrophobic and positively charged 
drugs (70) but also transports choles-
terol, platelet-activating factor (PAF) 
(71) and various other membrane lipids 
including sphingolipids (72). Transport 
of PAF may facilitate angiogenesis 
(73) while cholesterol (74) as well as 
sphingolipids (75) modulate drug re-
sistance. In addition to acidic and hy-
drophobic drugs ABCC1 transports a 
variety of arachidonic acid metabolites 
(69), important mediators of inflam-
mation. ABCC1 and ABCG2 trans-
port sphingosine-1-phosphate (S1P) 
(76) that facilitates cell growth, sur-
vival, invasion and angiogenesis (77). 
ABCG2 transports drugs with a wide 
substrate specificity (78). It also trans-
ports various vitamins, such as folates 
(riboflavin/vitamin B2) (79). Cellular 
efflux of folates may aggravate folate 
deprivation in patients on methotrexate 
therapy. Therefore, MDR-ABC trans-
porters are “more than just drug efflux 
pumps” (68). Transporter interaction of 
anti-rheumatic drugs is summarised in 
Table I. The anti-inflammatory effect 

of disease-modifying anti-rheumatic 
drugs (DMARDs) might be at least 
partially attributable to the inhibition 
of the pathophysiological function of 
the MDR-ABC transporters in immune 
cells (80). 
According to the new concept MDR-
ABC transporters are biomarkers. Their 
role in the immune processes and MDR 
can only be evaluated as part of a com-
plex panel of biomarkers for prognostic 
scoring (67), for monitoring disease ac-
tivity (81) or to predict the responsive-
ness to certain medications (e.g. immu-
nosuppressive treatments or chemother-
apy in malignancies) (80). However, 
translation of MDR-ABC transporter 
activity into clinical decisions and treat-
ment regimen requires robust and reli-
able in vitro diagnostic tests for the as-
sessment of efflux transporter function 
in target cells.

MDR-ABC transporters in RA
The role of transporters in RA has been 
studied for almost two decades. Most 
of the studies focused on ABCB1 as the 
prototype ABC transporter and were 

Table I. MDR-ABC transporter interaction of anti-rheumatic drugs.
						    
Drug	 Transporter	 Methods / Test system	 Effect	 Ref.

Methotrexate	 ABCC1	 a. human ovarian carcinoma cell line 2008, transfected with	 a. [3H]MTX Accumulation w/wo probenecid	 a. (115)
		  human MRP1 and inside-out plasma membrane vesicles	 and ATP-dependent uptake of [3H]MTX
		  b. NIH3T31/MRP12 vesicle	 b. vesicular uptake  of MTX	 b. (116)  
	 ABCG2	 a. HEK293-wtABCG2 vesicle	 a. vesicular uptake, inhibition by FTC 	 a. (117)
 		  b. MCF73/MX4selected, MCF7/BCRP 5transfected vesicle	 b. vesicular uptake, inhibition by FTC	 b. (118)

Leflunomide	 ABCG2	 BCRP-HAM-Sf96 membrane and PLB9857-BCRP8 and	 ATPase, VT assay	 (119)
		  HEK293-BCRP8 cell lines	 Hoechst assay		
	 ABCG2	 synovial tissue from RA patients	 decreased BCRP positivity after leflunomide	 (96) 
			   treatment in responder group	

Prednisolon*	 ABCB1	 LLC-PK1/MDR110 cell line	 monolayer assay	 (120)

Sulfasalazine	 ABCG2	 a. Caco211 cell line	 a. transport	 a. (121)
		  b. CEM12 /SSZ13 cell line	 b. cytotoxicity (IC 50 increased)	 b. (122)

Chloroquine	 ABCB1	 a. MDCKII-MDR114  monolayer	 a. monolayer assay	 (123)
		  b. Sf9-MDR1 membrane	 b. ATPase  
		  c. MDCKII-MDR114 monolayer	 c. Calcein assay 	

	 ABCC1	 CEM-CEM/CQ15 cells	 cytotoxicity- reversal resistance with MK571	 (124) 
			   and probenecid	

*methyl-prednisolone- 26-fold higher affinity 
1NIH3T3: Mouse embryonic fibroblast cell line; 2NIH3T3/MRP1: MRP1 overexpressing in NIH3T3; 3MCF7: human breast adenocarcinoma cell line; 
4MCF7/MX and 5MCF7/BCRP: BCRP overexpressing cell line; 6Sf9: membrane from Spodoptera Frugiperda 9; 7PLB985: human myelomonoblastic leu-
kaemia cell line; 8PLB985-BCRP: BCRP over-expressing cell line; 9HEK293-BCRP: BCRP overexpressing HEK 293 cell line; 10LLC-PK1/MDR1: MDR1 
overexpressing LL-PK1 cell line; 11Caco2: immortalised human epithelial colorectal adenocarcinoma cell line; 12CEM: human acute lymphocytic leukaemia 
cell line; 13CEM/SSZ: sulfasalazine resistant human acute lymphocytic leukaemia cell line; 14MDCKII-MDR1: MDR1 overexpressing MDCKII cell line;   
15CEM/CQ: chloroquine resistant human acute lymphocytic leukaemia cell line.
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trying to correlate ABCB1 expression 
with disease status and more impor-
tantly drug resistance. These studies 
with one exception (82) have found 
increased levels of ABCB1 expression 
in peripheral blood lymphocytes (PBL) 
or peripheral blood mononuclear cells 
(PBMC) that correlated with lower 
intracellular dexamethasone levels in 
these cells (83-86). Moreover, ABCB1 
activity was higher in refractory than in 
non-refractory subgroups (83, 87). In 
contrast, no correlation was seen bet-
ween ABCB1 expression and disease 
activity in synovial cells (88), though 
prior treatments may induce ABCB1 
expression both in lymphocytes (82) 
and synovial cells (88) and published 
data were not always correlated for 
this important covariate. Dependence 
of ABCB1 activity on the genotype 
is controversial. Tumour cells of B 
cell chronic lymphocytic leukaemia 
patients of 3435CC genotype were 
shown to have greater ABCB1 activ-
ity than carriers of the T-allele (89) 
while no difference was observed in 
PBMCs from healthy volunteers (90). 
No difference in representation of vari-
ants between patients and controls was 
shown (91). However, probability of 
remission upon methotrexate and glu-
cocorticoid co-administration was sig-
nificantly higher in patients of 3435TT 
genotype than in carriers of the C al-
lele (91, 92). Conversely, methotrexate 
monotherapy leads to statistically sig-
nificantly more non-responders in the 
3435TT cases than in the 3435CC cas-
es (93). Cyclosporine A (94) or tacroli-
mus (86) treatment reduced ABCB1 
levels in lymphocytes and reversed 
resistance.
No difference was observed in ABCC1 
status of RA patients and controls (95). 
Unexpectedly, methotrexate and / or 
folate treatment lead to downregula-
tion of ABCC1 (95). On the contrary, 
ABCG2 expression was 2-fold higher 
in synovial macrophages of RA pa-
tients than in controls and a 3-fold in-
crease was observed in non-responders 
over responders to methotrexate and/
or leflunomide (96). Intriguingly, com-
bination therapies of the ABCG2 sub-
strate methotrexate with other ABCG2 
substrate and/or inhibitor DMARDS 

(sulfasalazine, leflunomide, hydroxy-
chloroquine, cyclosporine A) yielded 
better response rates than the mono-
therapy (97). But no difference was 
observed when methotrexate was co-
administered with ABCG2 non-interac-
tors such as azathioprine and gold (97). 
In summary, the ABCG2 data clearly 
show the importance of this transporter 
in pathogenesis as well as therapeutic 
response of the disease. The fact that 
most small molecular DMARDs are 
ABCG2 substrates substantiates the 
importance of ABCG2 in RA. The 
ABCB1 data are somewhat controver-
sial. The controversy may stem from 
the fact that methotrexate, the drug 
used in most studies is not an ABCB1 
substrate and/or inhibitor. Early data 
suggested that methotrexate showed 
an ABCB1 dependent cytotoxicity (98) 
but substrate nature of methotrexate 
has not been confirmed in bona fide 
transport experiments (99). Nonethe-
less, ABCB1 may play a role through 
a mechanism other than drug transport 
as treatment-induced down-regulation 
of ABCB1 correlated with decreased 
secretion of cytokines in patients (99) 
and administration of siMDR1 reduced 
synovial cytokine production in vitro 
and in vivo in rat (100). 

Investigation of transporter function 
in a clinical setting
There are numerous technical ap-
proaches to assay MDR function, such 
as (i) detection of known functional se-
quence variants in ABCB1, ABCC1 and 
ABCG2 genes, (ii) quantitation of the 
transporter expression or (iii) measure-
ment of the activity of the transporters. 
Inter-individual variability in response 
to drug therapy might be, at least in 
part, explained by genetic factors, such 
as the mutations and polymorphisms 
identified in the genes of ABC-trans-
porters. Some of these allelic vari-
ants have been associated with altered 
gene expression (101-103) or substrate 
specificity (104, 105) of the transport-
ers, which might affect the response 
to certain drugs. The most commonly 
tested functional polymorphisms of the 
MDR transporters are the 3435C>T 
(rs1045642), 2677G>T/C (rs2032582), 
1236C>T (rs1128503) variants in 

the ABCB1 and the SNP 421C>A in 
ABCG2 (rs2231142). The analysis of 
these genetic alterations is straight-
forward using multiparametric assays. 
Efforts to identify pharmacogenetic 
markers in ABCB1 have led to con-
flicting and inconclusive results. As a 
consequence of a huge variety of indu-
cers (drugs, hormones and cytokines), 
complexity of gene-gene interactions, 
nutritional factors, tissue-specific ex-
pressions and various inhibitions by 
co-medications as well as influence 
of co-morbidities the MDR phenotype 
cannot be predicted from the genotype 
of the patients (i.e. prediction of the 
treatment efficacy) (106). On the con-
trary, numerous studies have shown 
that the ABCG2 421C>A polymor-
phism leads to significantly decreased 
activity of the transporter leading to 
increased exposure to ABCG2 sub-
strate drugs, DMARDs, sulfasalazine 
(107, 108), teriflunomide (109) among  
them. Translation of these data into the 
MDR phenotype is still missing with 
perhaps one notable exception. Psoria-
sis patients carrying the ABCG2 vari-
ant alleles responded favourably (110) 
to treatment with methotrexate, an 
ABCG2 substrate drug (111). Charac-
teristics of assay protocols for assess-
ment of MDR-ABC transporter geno-
type is shown in Table II.
Quantifying mRNA levels (106, 112, 
113) is difficult due to preanalytical 
challenges, such as the proper selec-
tion, isolation of target cells and the 
instability of mRNA transcripts, but 
then the correlation with the activ-
ity is closer than correlation of activ-
ity with pharmacogenomic variants. 
Alternatively, MDR gene expression 
can be measured by quantifying pro-
teins directly using antibody based or 
liquid chromatography tandem mass 
spectrometry (LC/MS/MS) based tech-
niques. For testing clinical specimens 
(e.g. tissue or blood samples), the most 
commonly employed methods are im-
munohistochemistry and flow cyto-
metry. Immunohistochemistry is wide-
ly used to assess the MDR phenotype in 
solid tumours; however, it has obvious 
limitations in quantification and is less 
amenable to characterise white blood 
cells in autoimmune diseases. Flow cy-
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tometry is a complementary technique 
as it is a powerful tool to investigate 
protein expression on thousands of im-
mune cells or even in a given lympho-
cyte subpopulation(s) of interest. The 
LC/MS/MS-based protein quantitation 

is not routinely used in diagnostics yet. 
Significant drawbacks of these tech-
niques are the indirect link between the 
protein expression and function and 
the effect of characteristics of the anti-
body (e.g. affinity, specificity and cross 

reactivity) used in the study. Descrip-
tion of assay protocols for assessment 
of MDR-ABC transporter expression is 
shown in Table II.
The third option to quantify MDR func-
tion in target cells is measurement of 

Table II. Methods to assess MDR-ABC transporters in clinical setting.

Test (Manufacturer)	 Measured parameter	 Remarks	 Regulatory status

Genotyping assays
In-house tests	 Genotyping single or multiple polymorphisms	 Performance characteristics of the assays are variable.	 LDT 
	 in the ABC transporter genes	 Applied often only in one laboratory and/or only in a 
		  few studies	

MDR1 C3435T ToolSet	 genotyping of the C3435T polymorphism	 Qualitative real-time PCR assay optimized for the	 RUO 
   (Genes-4U)	  	 Roche LightCycler instruments	

mRNA expression tests
In-house tests	 Quantitation of gene expression of a single or	 Variable performance characteristics.	 LDT 
	 multiple ABC transporter(s)	 Applied often only in one laboratory and/or only in a 
		  few studies	

RealTime Ready ABC	 gene expression of 42 ABC-transporters	 Prevalidated real-time quantitative PCR assays in 96	 RUO 
   Transporter Panel (Roche)	  	 well plate format	

Human Drug Transporters	 PCR array of 84 human transporters 	 96 and 384 well plate and 100 well disc formats	 RUO
   RT2 Profiler (Qiagen)	 including 29 ABC-transporters	

Taqman Array Human	 mRNA expression of 44 ABC-transporters	 96 well plate	 RUO 
   ABC Transporters 
   (Applied Biosystems)	

Antibody-based assays 
Anti-MDR1 antibodies	 Protein expression (immunocytochemistry,	 Clones: 	 RUO
   (Different suppliers)	 flow cytometry, etc.)	 Extracellular: MRK16, MC57, UIC2*
		  Cytoplasmic: JSB-1	

Anti-MRP1 antibodies	 Protein expression (immunocytochemistry,	 Clones: 	 RUO
   (Different suppliers)	 flow cytometry, etc.)	 Extracellular: –
		  Cytoplasmic: MRPm5, QCRL-3	

Anti-BCRP antibodies 	 Protein expression (immunocytochemistry,	 Clones:	 RUO
   (Different suppliers)	 flow cytometry, etc.)	 Extracellular: 2J39, 5D3*
		  Cytoplasmic: BXP-21, BXP-34	
* conformational antibodies

Functional (Dye Efflux) Assays
In-house functional assays	 MDR1 and/or MRP1 and/or BCRP activity	 Widely applied substrates:	 LDT
		  MDR1:DiOC2, Calcein-AM, Rhodamine-123
		  MRP1: Calcein-AM, 
		  BCRP: Hoechst-33342, Mitoxantrone, Pheophorbide A.
		  The results are not comparable between the individual 
		  laboratories applying different protocols.	

MDR1 Direct Dye Efflux	 MDR1, MRP1, BCRP	 Substrates:	 RUO 
   Assay (Millipore)		  MDR1 and BCRP: DiOC2
		  MRP1: Rhodamine-123
		  The assay protocol is long and depends on the 
		  activities of the transporters. 	

eFluxx-ID Green/Gold kit	 MDR1, MRP1, BCRP	 Substrates:	 RUO
   (Enzo- Life Sciences)		  EFluxx-ID Green kit: Fluo-8, 
		  EFluxx-ID Gold kit: Rhod-4
		  Interaction of these dyes with the BCRP transporter 
		  could not be confirmed on transfected cell lines.	

MultiDrugQuant kit	 MDR1, MRP1, BCRP	 Substrates:	 RUO 
   (Solvo Biotechnology)	  	 MDR1 and MRP1: Calcein-AM
		  BCRP: Mitoxantrone	

Solvo MDQ kit 	 MDR1, MRP1, BCRP	 Substrates:	 CE-IVD
   (77 Elektronika Kft.)	  	 MDR1 and MRP1: Calcein-AM
		  BCRP: Mitoxantrone	
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the translocation of a probe substrate. 
Such a measurement is only possible if 
the substrate can be easily detected and 
visualised/quantified within the cell/
tissue of interest. Except for the isotope 
labeled probes used for imaging bar-
rier penetrations and mapping solid tu-
mours (114), the compounds applied in 
functional assays are fluorescent dyes. 
Therefore, these tests are often referred 
as fluorescent dye uptake assays. Cells 
expressing more MDR transporters ac-
cumulate the fluorescent substrate at a 
slower rate, thus, the difference in the 
fluorescent signal intensities measured 
with/without the specific inhibitor is 
proportional with the activity of the 
transporter in the target cells. These 
functional assays measure the MDR 
function directly and cell subpopula-
tion specific values can be obtained 
when employing a FACS-based meth-
od. Some fluorescent dye-uptake tests 
require long incubation times, exten-
sive washing or have serious shortcom-
ings in their kinetics (e.g. intracellular 
sequestration, poor cellular retention, 
etc.) and/or fluorescent characteristics 
(spectral and intensity shifts).	

A multitude of assay protocols for as-
sessment of MDR-ABC transporter 
activity has been developed (Table II). 
Nevertheless, most of these tests failed 
to conform to the robustness and re-
producibility required from routine di-
agnostic methods. Furthermore, trans-
porter activities measured in the same 
patient sample can vary depending on 
the fluorescent substrates and testing 
procedure applied. 
Each of these approaches are character-
ised by a huge variety of MDR testing 
methods usually applying individual re-
agents (e.g. primers, probes, antibodies, 
fluorescent substrates and inhibitors) 
according to an individual procedure 
adapted from the literature or developed 
in-house by the individual laboratory 
(Table II). The performance (measured 
in terms of specificity, reproducibility 
and robustness) of such laboratory de-
veloped tests (LDTs) varies from labo-
ratory to laboratory because they are not 
subjected to the same quality standards 
as commercial kits. 
At present, there is only one commer-
cial kit which has been registered (CE-
marked) for diagnostic purposes in 

the EU and some other countries with 
similar IVD regulatory requirements 
(Table II). This kit applies the calce-
in-assay technology (Fig. 1, left) for 
quantitative measurement of ABCB1 
and ABCC1 activities. ABCG2 activity 
is measured using a similar principle: 
intracellular accumulation of mitox-
antrone, a fluorescent drug is measured 
in the presence and absence of the se-
lective ABCG2-inhibitor, Ko134 (Fig. 
1, right).

Conclusions
MDR-ABC transporters influence sus-
ceptibility to develop RA and also may 
define prognosis and therapeutic re-
sponse. Diagnostic tools that allow for 
assessment of MDR-ABC transporter 
activity in the cell type most relevant 
to the disease and/or the therapeutic 
drug are clearly favoured. Clinical tri-
als correlating MDR-ABC transporter 
activity and prognosis are warranted.
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Fig. 1. Dye efflux assays applied in the Solvo MDQ-kit. The Calcein-assay (left panel) is based on determining fluorescence intensity using a flow cytometer. 
After short in vitro incubation of the cell suspension with the fluorogenic dye calcein-acetoxymethyl ester (calcein AM), activity ABCB1 and ABCC1 is de-
termined using selective inhibitors of the transporters. Intracellularly calcein‑AM is rapidly hydrolysed by esterases to yield the highly fluorescent free acid, 
calcein, which due to its hydrophilic character becomes trapped in the cytoplasm. The Mitoxantrone-assay (right panel) measures the activity of ABCG2 trans-
porter applying a similar principle. The assay utilises mitoxantrone as a fluorescent dye and Ko134 as an ABCG2-specific inhibitor. Pls note that mitoxantrone 
is fluorescent and, therefore, does not require further intracellular processing.
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