Detection of the inflammatory process in a Behçet’s disease-like mouse model using \(^{18}\text{F}\)-fluorodeoxyglucose positron emission tomography

S.B. Cho\(^1\), S. Sohn\(^2\), Z. Zheng\(^1\), A. Cho\(^3\), H. Kim\(^4\), W.J. Kang\(^3\), D. Bang\(^1\), M. Yun\(^3\), J.D. Lee\(^3\), J.H. Lee\(^3\)

\(^1\)Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; \(^2\)Laboratory of Cell Biology, Ajou University Institute for Medical Sciences, Suwon, Korea; \(^3\)Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea; \(^4\)Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.

\(^1\)These authors contributed equally to this work.

Please address correspondence to: Jae-Hoon Lee, MD

Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea.

**ABSTRACT**

**Objectives.** The major role of herpes simplex virus (HSV) type 1 infection in Behçet’s disease (BD) immunopathogenesis has been demonstrated and inoculating the earlobes of ICR mice with HSV produced a BD-like mouse model. \(^{18}\text{F}\)-fluorodeoxyglucose positron emission tomography (FDG PET) is widely used for diagnosing numerous human diseases other than malignancies. The aim of our study was to evaluate the inflammatory activities of BD-like symptoms in a HSV type 1-induced BD-like mouse model by small-animal FDG PET.

**Methods.** Five HSV-infected ICR mice with BD-like lesions, two asymptomatic HSV-infected mice, and two untreated mice were scanned with microPET, and autopsy specimens were histopathologically assessed to evaluate for infiltration by mixed inflammatory cells.

**Results.** The histopathological evaluation of the inflammatory process in knee and elbow joints significantly correlated with the quantitative assessment of FDG accumulation in the same joints in BD-like ICR mice, HSV-infected asymptomatic mice, and untreated control mice. Small-animal FDG PET clearly detected asymptomatic joint inflammatory processes in both BD-like mice and HSV-infected asymptomatic mice. In addition, genital ulcers and skin ulcers with associated perilesional lymphadenopathies in BD-like models were detected by microPET. However, biodistributed PET-positive images from the stasis of secreted FDG into the bowel lumen could not be distinguished from the inflammatory bowel lesions of BD when compared to FDG uptake in control mice.

**Conclusion.** Our data indicate that FDG PET can non-invasively and quantitatively detect the inflammatory process in an HSV-induced BD-like mouse model.

**Introduction**

Behçet’s disease (BD) is a chronic, multisystem vasculitis that theoretically affects all sizes and types of blood vessels (1). Although pathogenesis remains enigmatic, the major role of viral infection in BD immunopathogenesis, especially herpes simplex virus (HSV) type 1 infection, has been demonstrated in several reports (2-6). HSV type 1 has been significantly detected in saliva, intestinal ulcers, and genital ulcers by polymerase chain reaction in BD patients compared with healthy controls (3, 4). In addition, inoculating the earlobes of ICR mice with HSV produced a BD-like mouse model, and HSV DNA sequences were detected in the cutaneous and gastrointestinal ulcerative lesions of this mouse model (7). Although pretreatment or concurrent treatment of HSV-inoculated ICR mice with famciclovir could not prevent the development of BD-like symptoms, famciclovir seemed to be effective in improving BD-like symptoms and preventing recurrence in the symptomatic BD-like mouse model (8).

\(^{18}\text{F}\)-fluorodeoxyglucose positron emission tomography (FDG PET) is widely used for diagnosing numerous human diseases other than malignancies, including various causes of arthritis and vascular disease. However, to date, there have been few reports describing the clinical efficacy of FDG PET in BD patients (9-14). According to previous reports, FDG PET imaging is not believed to be effective for the detection of white-matter lesions in patients with neuro-BD (9, 10). In regard to vascular diseases affecting major arteries, De- necke et al. reported the inflammatory activity of pulmonary artery aneurysms detected by FDG PET in patients with BD (11). Our study group also reported eight BD patients presenting remark-
Behçet’s disease mouse model and FDG PET / S.B. Cho et al.

able FDG uptake in the cardiovascular lesions associated with BD, including aneurysms, pseudoaneurysms, aortitis, and arteritis (12). In addition, FDG uptake in orogenital ulcerative mucosal lesions, joint lesions, and erythema nodosum-like skin lesions have been demonstrated in BD patients (13, 14). In this report, we investigate the characteristics of FDG uptake in the inflammatory activities of BD-like lesions in a BD-like mouse model using small-animal PET compared with untreated ICR mice and asymptomatic HSV-infected ICR mice as controls.

Materials and methods

Behçet’s disease-like mouse model

As described previously (7), 4–5-week-old male ICR mice were infected with HSV type 1 (1 X 10<sup>6</sup> plaque forming unit/ml, F strain), which was grown in Vero cells. The earlobes of the mice were scratched with a needle, and the virus inoculation was performed twice with a 10-day interval, followed by 16 weeks of observation. Mice were bred in temperature- and light-controlled conventional rooms (20–22°C, 12-hour light cycle starting at 8:00 a.m.) with free access to food and water. Among the clinical manifestations in human BD patients, mouth ulceration, genital ulceration, erythema, skin pustules, skin ulceration, arthritis, diarrhea, red eye or reduced vision, loss of balance, and discolouration and swelling of the face were considered BD-like symptoms in the mouse model (7, 8). Mice with at least one major symptom were selected as having BD. The clinical characteristics of symptomatic BD-like mice (n=5) are summarised in Table I. Both untreated ICR mice (n=2) and asymptomatic ICR mice infected with HSV type 1 (n=2) were used as controls. Our experimental protocols were approved by the animal care committee of the Ajou University School of Medicine (Suwon, Korea).

<sup>18</sup>F-fluorodeoxyglucose uptake and joint inflammation

Histopathology

Immediately after performing FDG PET scans, mice were sacrificed, and tissue samples, including ulcerative skin lesions, both elbow and knee joints regardless of their symptoms, and the ileocecal portion of the intestine, were obtained and fixed. Then, a pathologist evaluated the sections with haematoxylin-eosin staining. In all cases, infiltrative mixed inflammatory cells were counted using the specimens obtained from joint tissues at a x200 magnification in 3–6 fields, and values are expressed as mean cell number. In addition, central nervous system involvement of BD was ruled out in all of the BD-like mice and controls by clinical manifestations and pathologic evaluation of brain tissues (17).

Statistical analysis

Values for quantitative variables are described as the mean and standard deviation. Spearman’s rank correlation coefficients were used to ascertain whether the quantitative uptake index of FDG PET was associated with the inflammatory cell infiltration. All of the analyses were performed using SAS software version 9.2 (SAS Institute Inc., Cary, NC, USA). A p-value less than 0.05 was considered statistically significant.

Results

<sup>18</sup>F-fluorodeoxyglucose uptake and joint inflammation

Histopathological assessment of inflammatory cell infiltration into the synovial membranes and perisynovial fat tissues of elbow and knee joints was performed for quantitative scoring of articular inflammation of the experimental ICR mice (Table II, Fig. 1). Symptoms suggestive of BD-related arthritis and/or arthralgia were not present in any of the BD-like mouse model or controls, except for secondary gait disturbance in one BD-like mouse with extensive cutaneous ulceration (case 3) and one BD-like mouse presenting

Table I. Clinical characteristics of symptomatic Behçet’s disease-like mice.

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Symptomatic Behçet’s disease-like mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oral ulcers</td>
<td>–</td>
</tr>
<tr>
<td>Genital ulcers</td>
<td>–</td>
</tr>
<tr>
<td>Skin lesions</td>
<td>+</td>
</tr>
<tr>
<td>Eye lesions</td>
<td>–</td>
</tr>
<tr>
<td>Vascular involvement</td>
<td>–</td>
</tr>
<tr>
<td>Arthritis</td>
<td>–</td>
</tr>
<tr>
<td>CNS involvement</td>
<td>–</td>
</tr>
<tr>
<td>GI involvement</td>
<td>–</td>
</tr>
</tbody>
</table>

CNS: central nervous system; GI: gastrointestinal system.
In the five BD-like mice, the mean number of inflammatory cells in the knee joint region was 121.2±53.9 cells, whereas control mice presented an inflammatory cell count of 163.3±63.9 in asymptomatic HSV-infected ICR mice and 20±21.4 in untreated ICR mice. In addition, the elbow joint region revealed a mean inflammatory cell count of 80.6±47.9, whereas the mean cell count was measured as 112.8±41.3 in asymptomatic HSV-infected ICR mice and 17±9.3 in untreated ICR mice.

Table II. Quantitative analysis of joint inflammation in the Behçet’s disease (BD)-like mouse model.

<table>
<thead>
<tr>
<th>Mouse</th>
<th>Elbow joint (right/left)</th>
<th>Knee joint (right/left)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum FDG uptake*</td>
<td>Mean FDG uptake*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD-like mouse 1</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>BD-like mouse 2</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>BD-like mouse 3</td>
<td>3.0</td>
<td>12.0</td>
</tr>
<tr>
<td>BD-like mouse 4</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>BD-like mouse 5</td>
<td>4.3</td>
<td>5.4</td>
</tr>
<tr>
<td>HSV-infected control mouse 1</td>
<td>10.3</td>
<td>8.8</td>
</tr>
<tr>
<td>HSV-infected control mouse 2</td>
<td>19.7</td>
<td>19.7</td>
</tr>
<tr>
<td>Control mouse 1</td>
<td>3.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Control mouse 2</td>
<td>2.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Values are expressed as percentage of injected dose per gram; FDG: 18F-fluorodeoxyglucose; HSV: herpes simplex virus.

Fig. 1. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and histopathology of joint inflammation. (A) A BD-like mouse (case 4) with focal FDG uptake in the knee joints (arrows). (B) A BD-like mouse (case 2) without noticeable FDG uptake suggestive of joint inflammation in the knee joints (arrows). (C) An asymptomatic herpes simplex virus (HSV)-infected mouse (case 2) with focal FDG uptake in the elbow (arrowheads) and knee joints (arrows). Histopathologic features of left knee joints in BD-like mice (D; case 4 and E; case 2) and (F) an asymptomatic HSV-infected mouse (case 2); haematoxylin and eosin stain with original magnification x100. B: bladder; GU: genital ulceration; H: heart; I: intestine; K: kidney; S: stomach.
were 9.2±5.7 and 4.3±3.0, respectively. Control mice presented maximum and mean % ID/g values of 25.8±7.9 and 15.7±4.9, respectively, in asymptomatic HSV-infected ICR mice and 3.9±1.5 and 2.6±1.0, respectively, in untreated ICR mice. In addition, the elbow joint region revealed maximum and mean % ID/g values of 4.7±3.2 and 2.8±1.8, respectively, whereas FDG accumulation was measured as 14.6±5.9% ID/g and 9.0±4.5% ID/g, respectively, in asymptomatic HSV-infected ICR mice and 3.0±0.5% ID/g and 1.5±0.4% ID/g, respectively, in untreated ICR mice. Histopathological evaluation of the inflammatory process in the knee joint region significantly correlated with the quantitative assessment of FDG accumulation in the same joints in BD-like ICR mice, HSV-infected asymptomatic mice, and untreated control mice (maximum FDG uptake, $r=0.843$, p<0.0001; mean FDG uptake, $r=0.811$, p<0.0001; Fig. 2). In addition, the elbow joint region showed significant correlation between the histopathological assessment of infiltrated inflammatory cell counts and quantitative PET results in identical joint regions in BD-like ICR mice, HSV-infected asymptomatic mice, and untreated control mice (maximum FDG uptake, $r=0.843$, p<0.0001; mean FDG uptake, $r=0.811$, p<0.0001; Fig. 2). In addition, the elbow joint region showed significant correlation between the histopathological assessment of infiltrated inflammatory cell counts and quantitative PET results in identical joint regions in BD-like ICR mice, HSV-infected asymptomatic mice, and untreated control mice (maximum FDG uptake, $r=0.843$, p<0.0001; mean FDG uptake, $r=0.811$, p<0.0001; Fig. 2).
Fig. 4. (A) Herpes simplex virus-induced Behçet’s disease-like mouse with extensive cutaneous ulceration (case 3), and (B-D) 18F-fluorodeoxyglucose (FDG) positron emission tomography (B, maximum intensity projection view; C, sagittal view; D, axial view). Focal 18F-fluorodeoxyglucose (FDG) uptake on the skin ulceration (arrows) and perilesional lymphadenopathies (arrowheads). B: bladder; H: heart; I: intestine; K: kidney.

Case 1
A male ICR mouse which was infected with HSV type 1 presented the BD-like symptom of skin ulceration on the tail (Fig. 3A). After the acquisition of PET data from whole body microPET, tissue samples were obtained from the tail and both elbow and knee joints. Focal FDG uptake was detected in the ulcerative skin lesion on the tail, and diffuse uptake was identified in both knee joints, suggestive of arthritis (Fig. 3B). The mean mixed inflammatory cell count in the tail ulceration was 154 cells at a x200 magnification, and maximum FDG accumulation was measured as 9.8% ID/g.

Case 2
A male HSV-infected ICR mouse demonstrated the BD-like symptoms of red eyes and abdominal distension. After microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 3
A BD-like ICR mouse presented with genital ulceration. After having microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 4
A male HSV-infected ICR mouse presented with genital ulceration. After having microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 5
A BD-like ICR mouse presented with a left red eye and periorbital and periauricular skin ulcerations. MicroPET demonstrated focal FDG uptake in the periorbital and periauricular areas, which clinically presented as skin ulcers. The mean mixed inflammatory cell count in the periauricular skin ulceration was 112 cells at a x200 magnification, and the maximum FDG accumulation was measured as 11.6% ID/g.

$r=0.769, p=0.0013$; mean FDG uptake, $r=0.722, p=0.0036$.

Case 1
A male ICR mouse which was infected with HSV type 1 presented the BD-like symptom of skin ulceration on the tail (Fig. 3A). After the acquisition of PET data from whole body microPET, tissue samples were obtained from the tail and both elbow and knee joints. Focal FDG uptake was detected in the ulcerative skin lesion on the tail, and diffuse uptake was identified in both knee joints, suggestive of arthritis (Fig. 3B). The mean mixed inflammatory cell count in the tail ulceration was 154 cells at a x200 magnification, and maximum FDG accumulation was measured as 9.8% ID/g.

Case 2
A male HSV-infected ICR mouse demonstrated the BD-like symptoms of red eyes and abdominal distension. After microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 3
A BD-like ICR mouse presented with genital ulceration. After having microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 4
A male HSV-infected ICR mouse presented with genital ulceration. After having microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 5
A BD-like ICR mouse presented with a left red eye and periorbital and periauricular skin ulcerations. MicroPET demonstrated focal FDG uptake in the periorbital and periauricular areas, which clinically presented as skin ulcers. The mean mixed inflammatory cell count in the periauricular skin ulceration was 112 cells at a x200 magnification, and the maximum FDG accumulation was measured as 11.6% ID/g.

$r=0.769, p=0.0013$; mean FDG uptake, $r=0.722, p=0.0036$.

Case 1
A male ICR mouse which was infected with HSV type 1 presented the BD-like symptom of skin ulceration on the tail (Fig. 3A). After the acquisition of PET data from whole body microPET, tissue samples were obtained from the tail and both elbow and knee joints. Focal FDG uptake was detected in the ulcerative skin lesion on the tail, and diffuse uptake was identified in both knee joints, suggestive of arthritis (Fig. 3B). The mean mixed inflammatory cell count in the tail ulceration was 154 cells at a x200 magnification, and maximum FDG accumulation was measured as 9.8% ID/g.

Case 2
A male HSV-infected ICR mouse demonstrated the BD-like symptoms of red eyes and abdominal distension. After microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 3
A BD-like ICR mouse presented with genital ulceration. After having microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 4
A male HSV-infected ICR mouse presented with genital ulceration. After having microPET analysis, the BD-like mouse was autopsied, and the specimens obtained from the PET-positive ulcerative lesion were revealed to have extensive mixed inflammatory cell infiltration. The mean mixed inflammatory cell count in the genital ulceration was 174 cells at a x200 magnification, and the maximum FDG accumulation was measured as 13.0% ID/g (Fig. 1A).

Case 5
A BD-like ICR mouse presented with a left red eye and periorbital and periauricular skin ulcerations. MicroPET demonstrated focal FDG uptake in the periorbital and periauricular areas, which clinically presented as skin ulcers. The mean mixed inflammatory cell count in the periauricular skin ulceration was 112 cells at a x200 magnification, and the maximum FDG accumulation was measured as 11.6% ID/g.

$r=0.769, p=0.0013$; mean FDG uptake, $r=0.722, p=0.0036$.
Discussion

BD involves multiple organs with symptomatic heterogeneity (18, 19). In addition, pathogenicologic laboratory findings and imaging modalities for baseline workup to detect systemic inflammatory reactions have not been established either in BD patients or in BD-like animal models (3, 20). Until recently, animal studies using BD-like models have been investigated mostly by methods that score BD severity, such as the BD activity index, and through analysis of autopsy specimens (7, 8, 21). However, current clinical scoring or histopathologic analysis methods have limitations when performing in vivo or longitudinal quantitative experiments with a relatively small number of animals (22).

In the present study, we investigated an in vivo imaging modality for visualisation and quantification of the inflammatory process in an HSV-induced BD-like mouse model using small-animal PET. Because joint involvement of BD usually presents clinically as intermittent and self-limiting monoarticular or oligoarticular arthritis and histopathologically as non-erosive arthritis, we evaluated both elbow and knee joints regardless of related symptoms in all experimental animals (23). In addition, both untreated ICR mice and asymptomatic HSV-infected mice were used as controls since only 15% of total HSV-challenged mice presented BD-like symptoms (7). According to the microPET findings and histology in this study, we found that HSV-infected, but asymptomatic mice also presented a remarkable PET-positive inflammatory process. Although the exact reason for higher FDG uptake and more intensive cellular infiltration in the joint lesions of HSV-infected asymptomatic mice than those of BD-like mice have not been elucidated, we supposed that HSV-infected asymptomatic mice could have a relatively longer disease duration between the onset of inflammatory process and microPET evaluation than symptomatic mice.

Many studies have demonstrated that FDG uptake is increased in both inflammatory tissue and tumours, demonstrating the clinical feasibility and usefulness of FDG PET in quantifying and monitoring inflammatory processes (24-29). The exact mechanism of FDG uptake is not clearly elucidated, but an increase in glycolytic activity combined with translocation of glucose transporters is a possible mechanism (30, 31). Several studies have assessed the clinical value of FDG PET in BD patients, however, most of the studies emphasised the detectability of FDG PET (10-12, 32), so the degree of FDG uptake, presumably reflecting the degree of inflammation, was not in focus. In this study, we used visual quantification of the cellular infiltrate in BD lesions to measure the severity of the lesonal inflammatory process and compared it with the degree of FDG uptake on small-animal FDG PET. Statistical analysis showed that the degree of FDG uptake, represented as the proportion of injected dose (% ID/g), was significantly correlated with the severity of the inflammatory process, and our findings demonstrated the feasibility and usefulness of FDG PET for objective in vivo quantification of inflammation. In contrast to histopathology, FDG PET cannot differentiate the exact cellular composition of the inflammatory infiltrate. It is reported that FDG uptake is remarkably enhanced in macrophage-dense regions in chronic inflammatory tissue (25), however, research has shown that other types of white blood cells also showed variable degrees of FDG uptake, and such results seem to make accurate differentiation of the cellular components impossible (26, 33-35). The clinical efficacy of FDG PET for the evaluation of intestinal inflammation has not been evaluated in BD patients, and as shown in the present animal study, the decreased sensitivity for intra-abdominal lesions are other weak points of FDG PET due to the limitations of spatial resolution and physiologic FDG uptake in skeletal muscles and bowel.

Still, we suggest that FDG PET provides much valuable knowledge to overcome these drawbacks. First, FDG PET can detect visceral involvement of disease, even in its early or asymptomatic stage. In our study, FDG PET revealed small bowel obstruction and the probable leading point of intestinal BD involvement in one mouse. Furthermore, the degree of FDG uptake in elbow and knee joints was significantly higher in the disease group than in the control group, and histopathologic analysis confirmed the corresponding difference in the number of inflammatory cells in the synovia. This result could suggest another possible application of FDG PET as a screening tool in asymptomatic BD patients in addition to monitoring disease activity. Second, whereas histopathologic evaluation inevitably requires sacrificing animals and therefore is limited in observation of the complete disease process and response assessment of multiple interventions in a living subject, FDG PET allows for repeated investigations of the same subject even with multiple disease-modulating interventions. This advantage enables not only longitudinal analyses within the same animal, but also direct and objective comparisons of treatment responses. In addition, when compared with other in vivo functional imaging modalities such as optical imaging, FDG PET is still superior in depth of penetration, spatial resolution, and objective quantification. Therefore, FDG PET is suggested as an important tool to non-invasively and accurately quantifies experimental inflammation in vivo.

Conclusion

In conclusion, our data indicates that FDG PET can non-invasively and quantitatively detect the inflammatory process in an HSV-induced BD-like mouse model. In addition, we suggest that FDG PET can be applicable for human BD patients as well as the experimental models with the clinical values of a baseline workup study and a guidance and control of anti-inflammatory treatment.

Acknowledgments

We thank Hye Sun Lee, PhD (Department of Biostatistics, Yonsei University College of Medicine, Seoul, Korea) for her help with the statistical analyses.
Behçet’s disease mouse model and FDG PET / S.B. Cho et al.

References