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ABSTRACT
It is recognised that the genetic profiles 
that give rise to chronic inflammatory 
diseases, under the influence of envi-
ronmental agents, might have been im-
plicated in the host defence mechanism 
against lethal infections in the past. Be-
hçet’s disease (BD) is an immune-me-
diated inflammatory disease, expressed 
as vasculitis, triggered by environmen-
tal factors in genetically susceptible 
individuals. We carried out a review 
of published data to draw up an evolu-
tionary adaptation model, as Author’s 
perspective, for genetic susceptibility 
factors and inflammatory immune re-
sponse involved in BD pathogenesis. 
Two lethal infectious agents, Plasmodi-
um Falciparum and Yersinia Pestis, are 
proposed as the putative driving forces 
that favoured the fixing of the major 
genetic susceptibility factors to BD, 
thus determining its geoepidemiology. 
Further studies are needed to confirm 
the validity of this evolutionary model 
which includes and integrates the key 
insights of previous hypotheses. 

Evidence of a close link between mi-
crobial exposure and onset of diseases 
with an inflammatory immune compo-
nent is increasing. Humans have lived 
in an environment where infectious 
diseases have been mostly endemic (1). 
It has been postulated that such a pres-
sure by infective agents led to genetic 
selection aimed at a more effective pro-
inflammatory response thus boosting 
resistance to specific infections. This 
positive effect can however be counter-
balanced, under given circumstances, 
by a proneness to lethal complications 
or to immune-mediated inflammatory 
diseases (1-4). Here, a review of pub-
lished data was carried out to draw up 
an evolutionary adaptation model, ac-
cording to the Authors’ perspective, for 

genetic susceptibility factors and in-
flammatory immune response involved 
in BD pathogenesis.
BD is a systemic vasculitis character-
ised by the deregulation of both innate 
and adaptive immune responses with 
enhanced pro-inflammatory activity, 
strong genetic association and distinc-
tive geographical distribution. Several 
inflammatory related variants, such as 
TNF-α -1031C  (OR 1.3; 95% CI 5 1.1 
to 1.7) (5), IL10 rs1518111 A/G (OR 
1.4; 95% CI 1.3 to 1.6) (6) and IL23R-
IL12RB2 rs924080 A/G (OR 1.3 95% 
CI 1.2 to 1.4) (6) have been reported as 
associated with a small risk to develop 
BD, whereas HLA-B*51:01 is still con-
sidered the major genetic susceptibility 
factor to BD (OR 5.8; 95% CI 5.0 to 
6.7) (7). Distinctively, BD geoepidemi-
ology, of which the highest prevalence 
is seen from the Mediterranean basin 
to the Far East between latitudes 30°N 
and 45°N, mirrors the geographical 
distribution of HLA-B*51:01 across 
the globe (Fig. 1b) (8). HLA-B*51:01 
is speculated to have been spread, to-
gether with closely linked genes, by the 
migration of early Homo Sapiens from 
Africa to the Americas (8), and then 
fixed along the historical Silk Road (9). 
However, the reasons why HLA-B*51 
and BD are rare or virtually absent in 
some areas such as Sub-Saharan Af-
rica, and which forces have driven the 
fixation of genetic susceptibility fac-
tors to BD, are still unknown. 
We recently pointed out that the evolu-
tionary selection of HLA-B*51:01 and 
susceptibility genes in linkage disequi-
librium (LD) with it might have taken 
place over millennia (10). The specu-
lative evolutionary adaptation model 
described here is based on two assump-
tions. Firstly, on the negative selective 
pressure exerted in an endemic setting 
by Plasmodium Falciparum Malaria on 
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the ancestral Homo Sapien populations 
and their human descendants. Secondly, 
on a subsequent counterbalancing and 
a more recent positive selection by the 
epidemic Yersinia Pestis Plague. Both 
driving forces have contributed to the 
non-homogeneous distribution of HLA-
B*51:01 and linked genes (8) among 
world populations and to their fixation 
in a defined area of the world, thus in-
fluencing the geoepidemiology of BD 
(Fig. 1a-b). Finally, this model provides 
an insight into how such a dual patho-
gen-driven genetic selection might have 
favoured the co-selection of variants 
(e.g. TNF-α, ICAM1, IL-10) implicated 
in the polygenic pro-inflammatory trait 
involved in BD pathogenesis.

Mutual exclusion of Behçet’s disease 
and malaria endemic areas?
Plasmodium Falciparum as a 
negative selective agent for HLA-B*51 
and linked genes
Malaria from Plasmodium Falciparum 
is an infectious disease burdened by 
high mortality, mostly caused by cer-
ebritis, especially in children younger 
than 5 years-old, whose pressure has 
determined the selection of several 
polymorphisms and haplotypes both 
within and outside the HLA region (2). 
The other strains of Plasmodium (e.g. 
Vivax) are not selective agents. The 
co-evolution of Humans and Plasmo-
dium Falciparum started approximate-
ly 40–80,000 years ago in sub-Saharan 
Africa (Fig. 1a), before the out-of-Af-
rica migration (11). It is recognised that 
Plasmodium Falciparum had infected 
humans before the Great Human Ex-
pansion, the rapid spread of population 
across the Eurasian continent which 
started approximately 45–60,000 years 
ago (11, 12). The parasite accompanied 
the ancestors of modern humans in the 
colonisation of the planet that led to 
the spread of Plasmodium Falciparum 
across the tropics and laid the founda-
tions for its current geographical distri-
bution (11-13). The worldwide parasite 
population remained relatively small for 
a considerable period of time followed 
by rapid expansion about 10,000 years 
ago, concurrent with the emergence of 
agricultural societies in humans, which 
coincides with an increase in the spread 

of Malaria and a boost in the selective 
effect of Plasmodium Falciparum on 
modern humans (14).
In Africa, the malaria endemic from 
Plasmodium Falciparum and HLA-
B*51:01 have an inverse correlation 
suggesting a negative, pathogen-driven, 
evolutionary selection (Fig. 1b). It is 
noteworthy that HLA-B*51:01 allelic 
frequency is significantly lower in West 
African and Sub-Saharan ethnic groups 
(0.00 to 0.02), which are still plagued 
by Plasmodium Falciparum infection, 
than in closely related populations in-
habiting Southern Europe (0.15) and 
the Middle East (0.20). More epidemio-
logic evidence comes from Sardinia, a 
Mediterranean island with an isolated 
and genetically homogeneous popula-
tion which was plagued by endemic 
Plasmodium Falciparum infection for 
millennia, where Contu et al. (15) have 
demonstrated that HLA-B*51 frequen-
cy had an inverse correlation with ma-
laria prevalence in differently plagued 
island subareas. Further proof has 
emerged from molecular investigations. 
HLA-B*53:01 and HLA-B*35:01 are 
protective against severe malaria from 
Plasmodium Falciparum in West Af-
ricans and in Sardinians respectively 
(15, 16). Their amino acid sequences 
are identical to each other and to that of 
HLA-B*51:01 in the B pocket but dif-
fer from it in the F pocket in position 
116, where the HLA-B*51:01 harbours 
a tyrosine instead of a serine (17). This 
change modifies the structure of the 
peptide binding pocket and may be 
responsible for the lack of the protec-
tive effect afforded by HLA-B*51:01 
against malaria. Noteworthy, the HLA-
B*27 allele, which has a latitude-re-
lated gradient inverse to that of ma-
laria endemic (18) and whose sub-allele 
B*27:02 resulted associated with BD in 
Turkish patients (19), shows similarity 
with HLA-B*51 in the presentation of 
intracellular epitopes (20). 
Recently, a genome wide association 
study identified a strong LD in the HLA 
region of BD patients, mainly due to 
the fact that HLA-B*51 was found al-
most exclusively on a single extended 
haplotype (6). Successively, two dis-
tinct extended haplotypes harbouring 
HLA-B*51:01 were identified in Sar-

dinia, but only one of them was asso-
ciated with BD (21). Therefore, it is 
conceivable that distinct HLA-B*51:01 
haplotypes predispose to different 
degrees of inflammatory response. 
Several studies have reported the as-
sociation of enhanced TNF-α activity 
and TNF-α promoter polymorphisms, 
which are in strong LD with the locus 
B, with cerebral malaria as a fatal com-
plication of Plasmodium Falciparum 
infection. Noteworthy, some of these 
functional polymorphisms have been 
reported as associated with BD, either 
independently or synergistically with 
HLA-B*51:01. As an example, TNF-α 
-1031C is associated with stronger in-
flammatory response, mortality from 
cerebral malaria and BD susceptibility 
(22, 23). Based on this data it is rea-
sonable to assume that HLA-B*51:01 
haplotypic distribution may, in part, 
be the result of the ancestral selective 
pressure exerted by Plasmodium Falci-
parum which negatively selected those 
complex traits conferring an enhanced 
counterproductive and lethal pro-in-
flammatory phenotype. 

The origin and distribution of 
HLA-B*51, and linked genes, in 
modern humans
Verity et al. have suggested that the 
HLA-B*51:01 was spread by the mi-
gration of early Homo Sapiens from Af-
rica to the Americas (8), which by itself 
does not clarify why this allele is so rare 
in Africa. The highly conserved struc-
ture of HLA-B*51:01 in Caucasian, 
Japanese and Afro-Americans supports 
its evolvement prior to the divergence 
of the major ethnic groups (24). How-
ever, whether or not the HLA-B*51 
was already present in ancestral Homo 
Sapiens before the out-of-Africa mi-
gration is still debated (25). Despite a 
number of controversial viewpoints 
concerning the genetic differentiation 
of modern Homo Sapiens (26), it has 
been suggested that the presence of 
HLA-B*51 in Eurasians, together with 
B*07, C*07:02, C*16:02, might be the 
result of genetic contribution from the 
Neanderthals, which occurred after the 
early out-of-Africa migration until 40–
30,000 years ago. Such an admixture 
with the Neanderthals has been indicat-
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ed as the sole source in modern humans 
of these alleles, whose current presence 
in Africa was due to a back-migration 
(25, 26). Accordingly, the virtual ab-
sence of HLA-B*51:01 and other Ne-
anderthal alleles in some African areas 
may be explained by a small back flow 
of migrants rather than a negative selec-
tion by Plasmodium Falciparum (Fig. 
1). However, the higher frequency of 
the B*07 allele, which is not associated 
with Malaria susceptibility, in modern 
populations of Western and sub-Sa-
haran Africa compared to those of the 
Middle East and Central Asia clashes 
with the fact that this is the only accept-
able explanation. If Neanderthals were 
confirmed as the sole source of these 
alleles in modern humans, it could 
be assumed that early HLA-B*51:01 
positive humans returning to Africa, 
likely before the transition from hunter-
gatherer society to agricultural society, 
would have been negatively selected as 
more susceptible to dying from severe 
malaria. On the other hand, as Plasmo-
dium Falciparum had already infected 
early Homo Sapiens at the time of their 
admixture with Neanderthals, only a 
few HLA-B*51:01 positive individuals 
may have managed to return to Africa 
as a result of the malarial selection that 
took place along the path of their back-
migration.
In the event of a negative selection by 
Plasmodium falciparum, the burden of 
HLA-B*51:01 allele in the early set-
tlers of the Eurasian continent would 
have been reduced as would its frequen-
cy around the world be today, unless a 
founder effect or a subsequent decisive 
and rapid positive selective pressure or 
both occurred in those areas where it 
now appears to have greater frequency. 
It is thought that during the Great Ex-
pansion across the Eurasian continent 
there was a continuous decrease of ge-
netic diversity, understood as heterozy-
gosity, with geographic distance, a pro-
cess called serial founder effect (12). A 
major founder effect is deemed to have 
occurred in North America as the result 
of the crossing of the Bering Strait by 
a small number of Homo Sapiens 15–
10,000 years ago (12). Such a founder 
effect, which occurred in isolate versus 
neighbouring populations, might have 

favoured the fixing of those haplotypes 
harbouring the HLA-B*51, which pre-
viously escaped the selection by Plas-
modium Falciparum because not asso-
ciated with a lethal pro-inflammatory 
response, preserving this genetic back-
ground in a neutral environment due to 
the absence of selective pressure (e.g. 
the Americas were probably colonised 
by Plasmodium Falciparum far more 
recently and primarily in the lowlands 
and swamps and not in the mountains 
or mesas). This possible explanation 
corroborates a major prediction of Ver-
ity’s hypothesis (8) in which the virtual 
absence of BD in those Native Ameri-
can populations carrying a high inci-
dence of HLA-B*51 might be due to 
the absence of susceptible HLA-B*51 
sub-alleles or closely linked genes, as 
TNF-α promoter polymorphisms, or 
both (8). The finding that Amerindian 
populations carry the highest frequen-
cies reported worldwide of apparently 
non BD susceptible HLA-B*51:02 sub-
allele (0.13 to 0.15) (10) and TNF-α 
-857T (0.30 to 0.45) (27), as well as the 
lowest frequency of the BD associated 
TNF-α -1031C (0.07 to 0.09) (27), fur-
ther support Verity’s hypothesis.

Behçet’s disease along the path of 
the Black Death?
It has been claimed that the HLA-
B*51:01 subtype has been preserved in 
European and Asian populations by a 
unifying selection (28). To confirm the 
validity of our model, such selection is 
expected to have positively occurred 
after the overland migration across the 
Beringia Strait and to have been more 
intense in those areas where today’s 
populations have a higher incidence 
of BD. Moreover, the responsible in-
fectious agent should have favoured 
the fixation of pro-inflammatory phe-
notypes and complex traits containing 
and associated to the HLA-B*51:01 
because of their protective role in the 
host response against the infection.
Phylogenetic analysis suggested that 
Yersinia Pestis evolved in China 20–
15,000 years ago, therefore after the 
human migration across the Bering 
Strait, and spread worldwide, through 
multiple radiations along the ancient 
trading routes, resulting in historical 

epidemics (29, 30). Noteworthy, the re-
gions where humanity was hit by lethal 
epidemics from Yersinia Pestis, and 
particularly the Black Death (1330-
1350 AD), correspond to the same ar-
eas of greatest HLA-B*51:01 and BD 
incidence, and roughly trace the Silk 
Road (Fig. 1). Although it is common 
knowledge that the Black Death and its 
successive outbreaks until 17th century 
reached and struck Northern Europe-
an countries, it has been clarified that 
the plague hit central Asia, the Mid-
dle East, North Africa and Southern 
Europe hardest, spreading both across 
land and by ship  (31, 32). Causing the 
loss of one-third to half the world’s 
population at that time, the enormous 
impact of plague pandemics on human 
mortality led to the suggestion that Ye-
rsinia Pestis may have acted as a dev-
astating selective agent (31).
Several reports have suggested that 
strong innate and adaptive host re-
sponses are needed to overcome viru-
lence factors of Yersinia Pestis. In vitro 
and animal models show that the activ-
ity of TNF-α, IFN-γ and Nitric Oxide 
Synthase 2 are directly correlated with 
protection against lethal plague during 
the early intracellular stages of Yers-
inia Pestis infection (33, 34). Such an 
observation fits with the evidence that 
neutrophils may kill Yersinia Pestis 
through the enhanced production of 
superoxide and oxidative killing in-
duced by high serum TNF-α levels, 
leading to protection against lethal 
plague (35). Moreover, experimental 
observations suggest that HLA class I 
restricted cytotoxic T-lymphocyte play 
a pivotal role in the protective immu-
nity against plague (33, 36). Therefore, 
it is reasonable to assume that a geneti-
cally determined trait conferring a pro-
inflammatory immune response results 
protective against Yersinia Pestis.
Although the exact pathogenesis of 
BD remains unknown, it is established 
knowledge that BD patients have neu-
trophil, T-lymphocyte and natural killer 
(NK) hyperactivity with high serum 
TNF-α levels and enhanced pro-in-
flammatory cytokine production. Pe-
ripheral blood mononuclear cells from 
BD patients exhibit a hypersensitivity 
response, to both non-self (e.g. strep-
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Fig. 1. Image representative of the possible ways of distribution and fixation of HLA-B*51 and its sub-alleles around the world under the selective effect of 
Plasmodium Falciparum endemic (A) and Yersinia Pestis epidemics (B) and according to ancient dispersal patterns of humans during the past 100,000 years 
(100 Kyr) (13). The ancestral origin of HLA-B*51:01 or its later origin from inbreeding with Neanderthals is called into question. It is likely the high B*51 
frequency seen in areas in North America is due to a founder effect that occurred in a neutral environment. Only the most representative values of HLA-B*51 
sub-alleles frequency (http://www.allelefrequencies.net/) in indigenous pre-Columbian population are reported.
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tococcal antigens, super-antigens) and 
self (“molecular mimicry model”) anti-
gens, able to up-regulate the expression 
of activated T-lymphocytes and neutro-
phils in patients but not in controls (37). 
It remains unclear whether a virus or 
bacterium initiates and/or prolongs the 
characteristic mucosal and endothelial 
immune/inflammatory hyper-reactivity 
observed at the gastrointestinal bar-
rier and vascular surface, respectively. 
Such an increased pro-inflammatory re-
sponse is strongly believed to be part of 
a complex genetically determined trait 
(37). 
We speculate that this trait has been 
fixed as a by-product of the positive ge-
netic selection exerted by Yersinia Pes-
tis because of its protective role in the 
host response against infection. Hence, 
our model is genuine under the assump-
tion that the bottleneck effect secondary 
to the high mortality rate of plague epi-
demics might have caused the expan-
sion of this advantageous complex trait, 
counterbalancing the primitive negative 
selection of HLA-B*51:01 individuals 
by Plasmodium Falciparum malaria 
endemic (Fig. 1). In light of these con-
siderations, Yersinia Pestis might repre-
sent the driving force, hypothesised by 
Ohno et al. (9), that favoured the fixing 
of the complex trait closely linked to 
HLA-B*51:01 and associated with sus-
ceptibility to BD along the Silk Road 
thus contributing, together with the se-
lective effect of Plasmodium Falcipa-
rum but independently from it, to the 
distinctive geoepidemiology of BD in 
world populations.
Unfortunately, no data are available 
on which polymorphisms, both within 
and outside the HLA region, are asso-
ciated with susceptibility to or protec-
tion against plague in humans. Howev-
er, since the functional polymorphisms 
of TNF-α cause higher serum level of 
TNF-α, they might have been fixed in 
individuals exposed to Yersinia Pestis 
infection due to their protective role 
and might have played  a part in fix-
ing the BD-associated HLA-B*51:01 
haplotypes. A major role of HLA-
B*51:01 against Yersinia Pestis cannot 
be excluded, nevertheless, laboratory 
evidence is absent and this hypothesis 
remains open to further investigation. 

Finding the complex trait associated 
with Behçet’s disease
Although environmental factors are 
thought to have putative responsibility, 
ethnic background is considered more 
important in determining BD suscepti-
bility (38). 
Patients with BD are characterised by a 
pro-inflammatory phenotype that varies 
in degree and can be attributed to a com-
plex trait consisting of several genes co-
operating with distinct contribution in 
determining the complex pathogenetic 
mechanisms of the disease (39). Con-
sidering that the highest contribution of 
HLA-B*51:01 to the overall BD genetic 
susceptibility was estimated to be only 
19% (40), it is conceivable that the com-
plex trait conferring BD susceptibility 
may lead to disease development even in 
the absence of HLA-B*51:01, as proved 
by the fact that only 50–60% of patients 
are HLA-B*51:01-positive in endemic 
areas. A recent study has questioned 
the role of the HLA-B*51:01 as a ge-
netic determinant of BD by saying that 
its robust association with the disease is 
explained by a variant (rs116799036: 
OR 3.9) located between the HLA-B 
and MICA genes (41). Multiple genes 
other than HLA-B*51:01, both within 
and outside the HLA region, somewhat 
involved in the innate and adaptive im-
mune responses are also likely to con-
tribute with smaller effect (41-44) and it 
is reasonable to assume that an effective 
combination of them may confer disease 
susceptibility. Accordingly, evidence of 
linkage to several HLA and non-HLA 
susceptibility loci in BD patients has 
been provided (41-46). 
Why the allelic effect of variants asso-
ciated with BD is relatively small and 
disease hereditability is low (sibling 
recurrence rate 4.2%; 95% CI 1.2 to 
7.2) (47), rather than absent, could be 
satisfactorily explained by Darwin’s 
theory of evolution, through a patho-
gen-driven genetic selection, operat-
ing in a hostile environment to either 
decrease or increase the frequency of 
mutations that have an effect on the 
individual’s reproductive ability (48). 
Many examples of genetic variations 
conferring risk to BD development are 
polymorphisms of loci thought to be 
involved in susceptibility to cerebral 

malaria or protection against plague 
(Fig. 2). The stratified selection pos-
sibly operated by the two lethal infec-
tions identified in our model might 
have played a role in the fixation of 
the whole complex trait associated 
with BD development, and not only 
the HLA-B*51:01, taking part in the 
co-selection of genes in LD within the 
HLA region (e.g. HLA-MICA, HLA-
TNF-α), and/or functionally linked 
genes (e.g. HLA-KIR, cytokine-cy-
tokine, cytokine-thrombophilic fac-
tors, HLA-B*51:01-ERAP1), which 
may explain the low prevalence of BD 
outside those areas with high frequen-
cy of HLA*B51:01. As an example, an 
increase in some KIR-HLA combina-
tions, that were more effective in con-
trolling infections and promoting sur-
vival in different regions of Europe, 
has been envisaged (49). Another ex-
ample comes from IL10. Low levels 
of IL10 are associated with enhanced 
TNF-α production and, in experimen-
tal models, with susceptibility to lethal 
malaria by Plasmodium Falciparum 
and protection against Yersinia Pestis 
infection (50, 51); therefore, IL10 lo-
cus would be an attractive candidate 
for a strong selective pressure by these 
infectious agents. It is noteworthy that 
IL10 levels in BD patients are low and 
the BD-associated IL10 variants are 
associated with decreased expression 
of this anti-inflammatory cytokine (6). 
A major caveat in our model is why the 
HLA-B*51 link is scarce in BD patients 
from non-endemic areas. Outside of 
those regions of the world where HLA-
B*51:01 has a higher frequency, there 
is a lower or very low prevalence of BD 
suggesting that also the other suscepti-
bility alleles, with smaller effects, have 
been negatively selected in these areas. 
Interestingly, however, an increasing 
number of BD cases unrelated to HLA-
B*51 among individuals of African 
ancestry is reported in literature and 
this might be due to a different genetic 
distribution (52). In non-isolated popu-
lations of sub-Saharan Africa, the long-
term selection driven by Malaria might 
have negatively selected the extended 
haplotypes harbouring HLA-B*51:01, 
as the most disadvantageous in the 
Plasmodium Falciparum endemic en-
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vironment, but may have less strongly 
selected other advantageous pro-in-
flammatory genes. They may represent 
those genes less relevant to BD patho-
genesis, that however, in some com-
binations, might reach the threshold 
necessary for the clinical appearance 
of the disease, which would explain the 
lower frequency of BD reported in the 
indigenous South African, West Afri-
can and Afro-Caribbean populations. 
As an example, HLA alleles different 
from HLA-B*51 have been described 
as associated with BD in some popu-
lations but not in others, in particular 
those B alleles sharing the Bw4 motif, a 
specific sequence of amino acids at res-
idues 77-83 in the alpha-1 helix, which 
may be causally related to BD due to 
its involvement in NK cell recognition 
and recruitment (10). Such a possible 
explanation may lie in changes in ge-
netic distribution and selection of the 
human genome due to biogeography, 
where the host heterogeneity met the 
microbial polymorphisms and where 
additional selective pressure was ex-
erted by other infectious diseases (e.g. 
Tuberculosis, Smallpox), and might 
also be responsible for the reported 
variability of genetic susceptibility and 
disease expressions across and within 
world regions (53). 

Conclusion
Our digression can be a working hy-
pothesis for researchers dedicated to 
documenting the action of lethal infec-
tious agents on the genetics of human 
populations. We hope that this may 
open completely new areas of research 
and attract the attention of a new com-
munity of scientists from various dis-
ciplines. Future studies, addressed to 
prove the hypothesis as described here, 
might also shed some light on the major 
role of HLA-B*51:01 and its ligand(s) 
in BD pathogenesis, for which defini-
tive experimental proof is still missing.
Although it would be difficult, based 
only on historical data and indirect ex-
perimental evidence, to explain how 
the selective pressures acted on the 
complex trait associated with BD, it is 
possible to further test this hypothesis 
using experimental methods. To estab-
lish whether differences in frequency 
of genes involved in susceptibility to 
BD and protection against lethal infec-
tions have increased or arisen after the 
great epidemics of Yersinia Pestis, the 
genotype from victims of the Black 
Death could be analysed when less ex-
pensive and more effective techniques 
become available. A recognised feature 
of HLA-B*51 concerns its role in con-
ferring susceptibility to some infectious 

diseases (54) and protection against oth-
ers (55-57). In vitro experimental model 
might address the activity of neutro-
phils, NK and T-lymphocytes from 
HLA-B*51:01 positive BD patients and 
normal controls when challenged by 
Plasmodium Falciparum and Yersinia 
Pestis antigens to identify a different re-
sponse against these infectious agents. 
Given how little has actually been ex-
plained of the genetic influences on 
most common pro-inflammatory dis-
eases, a better understanding of the 
underlying evolutionary mechanisms 
will help to elucidate the functional 
relevance of genetic variants associ-
ated not only with BD, but even with 
other inflammatory immune-mediated 
diseases, possibly allowing the design 
of novel therapeutic strategies.
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