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ABSTRACT
Systemic sclerosis or scleroderma (SSc) 
is a clinically heterogeneous disease of 
the connective tissue characterised by 
vascular, immune/inflammatory and 
fibrotic manifestations. Despite exten-
sive investigations, the key pathogenic 
links between these disease hallmarks 
remain obscure, as well as the etiol-
ogy underlying the beginning of this  
complex disorder. As for other diseases 
characterised by prominent autoim-
mune phenomena, the search for infec-
tious agents responsible for immune 
tolerance breaks or molecular mimicry 
events has been a long-pursued issue. 
In this review, we summarise the cur-
rent knowledge regarding the asso-
ciation of different viral infections with 
SSc, focusing mainly on those reports 
describing a mechanistic interplay be-
tween the viral agents and the patho-
genesis of SSc. Moreover, we speculate 
on how viral infections may trigger 
additional pathogenic mechanisms re-
cently proposed to contributing to SSc 
phenotype.

Introduction
Autoimmune diseases are character-
ised by a loss of self-tolerance of the 
immune system, which can be caused 
by either genetic or environmental fac-
tors or a combination of both. Systemic 
sclerosis or scleroderma (SSc) is a 
peculiar member of this group of dis-
eases, because the humoral and cellular 
immunologic dysregulation, witnessed 
by the occurrence of autoantibodies to 
nuclear antigens in 95% of patients (1), 
must be placed in a complex pathologi-
cal network involving cellular players 
as diverse as fibroblasts and endothelial 
cells, whose functional alterations lead 
to skin fibrosis and obliteration of the 
lumen of small arteries, just to mention 
two of the main features of this multi-

system disorder (2). Viral agents, given 
their tropism for many, if not all, cel-
lular subtypes, including immune cells, 
and their ability to transform virtually 
any cells into antigen-presenting cells, 
have been traditionally considered as 
potential etiopathogenic triggers of 
SSc. Even vaccinations with viral prep-
arations have been claimed as potential-
ly responsible for development or wors-
ening of SSc or other connective tissue 
diseases, without confirmation from 
well conducted studies (3, 4). Herein 
we summarise the most meaningful evi-
dences supporting the role of different 
viral infections in the etiopathogenesis 
of SSc lesions and discuss additional 
pathogenic mechanisms proposed to 
contributing to SSc phenotype, possibly 
triggered by viruses.

CMV and vascular alterations in SSc
Vascular injury is an early event in 
scleroderma. It precedes fibrosis and 
involves small vessels, particularly the 
arterioles (5, 6). The vascular damage, 
which occurs in virtually any organs (7, 
8), consists of large gaps between en-
dothelial cells, loss of integrity of the 
endothelial lining, and vacuolisation of 
endothelial-cell cytoplasm. In addition, 
there are several basal lamina-like lay-
ers, perivascular infiltrates of mononu-
clear immune cells in the vessel wall, 
obliterative microvascular lesions, and 
rarefaction of capillaries (5, 6, 9, 10) 
which may become dramatic as the dis-
ease progresses, leading to a character-
istic paucity of small blood vessels in 
later SSc stages. A viral agent known 
for its ability to damage vessel walls 
is cytomegalovirus (CMV). Support-
ing evidence includes epidemiological 
reports indicating that chronic CMV 
infections in humans may play an im-
portant role in the pathogenesis of vas-
cular diseases such as atherosclerosis 
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(11) and systemic sclerosis (12, 13). A 
possible pathogenic mechanism under-
lying CMV damage of vessel walls is 
reported by Hamamdzic et al. (14) that 
employed IFN-γR deficient mice sub-
jected to whole body irradiation as an 
animal model of experimental arteritis 
triggered by murine cytomegalovirus 
(MCMV) infection. IFN-γR-/- mice 
whole body irradiation two months 
after infection developed severe vas-
culopathy characterised by extensive 
adventitial and medial infiltrate and 
significant neointima formation, a 
prominent feature of autoimmune vas-
culopathies in humans. Conversely, 
no vascular pathology was observed 
in any of the immunodeficient control 
groups, suggesting that MCMV infec-
tion was the critical factor. Infected im-
munocompetent animals exhibited only 
perivascular inflammation, suggesting 
that infection and immunosuppression 
were co-requisites of neointima forma-
tion. Apoptosis and active proliferation 
of myofibroblasts and infiltrating cells 
were detected in the intimal layer of af-
fected aortas of these mice. To further 
corroborate the analogy of this patho-
logical picture with human SSc, the 
experimental disease model was char-
acterised by up-regulation of growth 
factors (TGF-β1, PDGF-A and B) clas-
sically involved in SSc pathogenesis. 
Induction of TGF-β1, the canonical 
pro-fibrotic cytokine (15), by human 
CMV (HCMV) was reported by other 
authors (16), implicating that a primary 
endothelial cell infection by HCMV 
may induce myofibroblast activation in 
the vessel wall under the effect of this 
cytokine. In addition, proliferation of 
vascular smooth muscle cells highly 
contributes to increased thickness of the 
vascular wall in SSc. These cells can be 
infected and activated by HCMV, with 
subsequent induction of proinflamma-
tory mediators such as interleukin-1be-
ta (17) and the classical chemoattractant 
leukotriene LTB4 (18). Notably, the im-
mediate early gene products of HCMV, 
among which the chemokine receptor 
US28 (19) increase vascular smooth 
muscle cell migration, proliferation, 
and expression of PDGF beta receptor 
(20), a receptor overexpressed and hy-
peractivated in SSc vasculopathy (21). 

Finally, CMV-associated chronic en-
dothelial cell inflammation and damage 
result also from chemokine-mediated 
immunopathogenic effects such as the 
recruitment of natural killer (NK) cells 
(22), a population involved in collagen 
vascular disease (23).

CMV and autoimmunity in SSc
Since anti-endothelial cell and anti-
fibroblast pathogenic autoantibodies 
in SSc have been described (24-26), 
HCMV may be involved in the patho-
genesis of SSc not only through direct 
infection of endothelial cells or fibro-
blasts, but also through autoimmune 
events triggered by molecular mimicry, 
that is one of the mechanisms linking 
infections and autoimmunity (27-29). 
A remarkable molecular mimicry para-
digm involved in the pathogenesis of 
SSc was reported by Lunardi et al. (30), 
who identified in the serum of SSc pa-
tients IgG that specifically recognised 
the HCMV late protein UL94 and the 
endothelial cell surface integrin–NAG-
2 protein complex, thereby inducing 
endothelial cell apoptosis. This is a for-
mal demonstration that a host antiviral 
response, primarily directed against a 
HCMV protein expressed in infected 
cells, may become self-reactive to-
ward autoantigens, endothelial ones in 
this case, triggering SSc. Later on, the 
same group showed that anti-HCMV 
antibodies may be linked to the patho-
genesis of SSc not only by inducing 
endothelial cell activation and apopto-
sis, but also by causing activation of 
fibroblasts. In fact, they showed that 
NAG-2 is expressed as surface mol-
ecule also on dermal fibroblasts and 
that anti-UL94 antibodies bind to fibro-
blasts. Following anti-UL94 antibody 
stimulation, dermal fibroblasts acquired 
a ‘‘scleroderma-like’’ phenotype with 
up-regulation of several genes involved 
in extracellular matrix deposition (31). 
Moreover, humoral autoimmunity can 
also be elicited by non-specific B cell 
activation. In fact, CMV is a poly-
clonal B-cell activator in vitro, and the 
B cell hyperresponse does not require 
viral replication (32). Thus, additional 
pathogenic autoantibodies in SSc (33)
might arise as a consequence of exces-

sive activation of autoreactive B cell 
clones (34) triggered by CMV. In ad-
dition, CMV interacts with toll-like 
receptor (TLR) 7 and/or 9 in human 
plasmacytoid dendritic cells (DCs), 
leading to secretion of IFN-α and B cell 
proliferation (35). These DC-mediated 
events might facilitate polyclonal B cell 
activation and autoantibody production 
in SSc during CMV infection (36, 37). 
Also, a potential role for type I IFN-
activated monocyte/macrophages in the 
pathogenesis of SSc has been hypoth-
esised (38) and these cell types can be 
commonly infected and activated by 
CMV in vivo (39, 40).

CMV and SSc-like disease
B cell hyperactivation has clinical 
implications for infected patients, as 
demonstrated in transplant recipients, 
wherein autoantibodies contribute to 
the development of graft-versus-host 
disease (GVHD) in CMV-infected al-
logeneic stem cell transplant (allo SCT) 
patients and to graft rejection in solid or-
gan recipients (41-44). HCMV infection 
and its reactivation are associated with 
an increased risk for the development 
and the worsening of extensive chron-
ic cGVHD (45, 46), characterised by 
SSc-like lesions in the skin and internal 
organs associated with the presence in 
the serum of SSc-specific autoantibod-
ies such as anti-topoisomerase I (47). 
In a recent work by Lunardi’s group 
(48), plasma from 18 SCT patients was 
tested for anti-UL94 and/or anti-NAG-2 
antibodies by ELISA. Both donors and 
recipients were anti-HCMV IgG posi-
tive, without autoimmune diseases. 
11/18 patients developed cGVHD and 
all of them showed skin involvement, 
ranging from diffuse SSc-like lesions 
to limited erythema. 8/11 cGVHD pa-
tients were positive for anti-UL94 and/
or anti-NAG-2 antibodies. Remarkably, 
4/5 patients who developed diffuse or 
limited SSc-like lesions had antibodies 
directed against both UL94 and NAG-
2; their anti-NAG-2 IgG bound HU-
VECs and fibroblasts inducing both en-
dothelial cell apoptosis and fibroblasts 
proliferation, similar to that induced 
by purified anti-UL94 and anti-NAG-2 
antibodies obtained from SSc patients. 
These data suggest a pathogenetic link 
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between HCMV infection and SSc-like 
skin cGVHD in SCT patients through a 
mechanism of molecular mimicry be-
tween UL94 viral protein and NAG-2 
molecule, as observed in SSc patients. 

CMV and epithelial-mesenchymal 
transition in SSc. 
Fibrosis in SSc is not only due to ac-
tivation of tissue-resident fibroblasts 
and their transdifferentiation into myo-
fibroblasts, but also to differentiation of 
bone marrow-derived fibrocytes, and 
transition of endothelial and epithelial 
cells, pericytes and adipocytes into ac-
tivated mesenchymal cells. Epithelial 
cells from different sources can transi-
tion into fibroblasts and myofibroblasts 
in response to transforming growth 
factor beta and other growth factors/
cytokines. This is called epithelial-mes-
enchymal transition (EMT) (49, 50).
Along with endothelial cells, fibroblasts 
and smooth muscle cells, epithelial 
cells are the predominant targets for 
virus replication (51), which might in-
duce EMT. Also pericytes, that can dif-
ferentiate into vascular smooth-muscle 
cells, fibroblasts, and myofibroblasts 
(52) are permissive to HCMV infection 
with subsequent upregulation of pro-
inflammatory cytokines (53) possibly 
mediating EMT.

Parvovirus B19 and SSc.
In patients with SSc, Ferri et al. have 
demonstrated the presence of Parvo-
virus B19 in bone marrow and/or skin 
biopsy specimens from a significant 
number of unselected subjects (54, 55). 
Interestingly, the same authors found 
high levels of Parvovirus B19 DNA 
and TNF-alpha expression in endothe-
lium and fibroblasts of SSc patients us-
ing an in situ RT-PCR technique (56). 
Furthermore, the degree of viral tran-
script expression correlated with active 
endothelial cell injury and perivascular 
inflammation, relevant features in the 
initial phases of the disease, suggest-
ing that the SSc tissue injury may be a 
consequence of a direct viral cytotoxic-
ity (57, 58). On the other hand, Parvo-
virus B19 infection has been associated 
with production of antibodies directed 
against a vast array of autoantigens in-
cluding nuclear antigens, rheumatoid 

factor, neutrophils cytoplasmic anti-
gens, mitochondrial antigens, smooth 
muscle, gastric parietal antigens and 
phospholipids (59-62). Thus, an al-
ternative explanation for Parvovirus 
B19 role in the pathogenesis of SSc 
may be the induction of autoantibod-
ies endowed with a pathogenic action 
as demonstrated for HCMV. However, 
such hypothesis is still awaiting confir-
mation. 

Viruses and defective vasculogenesis 
in SSc.
Notwithstanding the progressive loss of 
blood vessels and high plasma levels of 
vascular endothelial growth factor (63, 
64) caused by the adaptive response to 
hypoxia, SSc is characterised by a de-
fect in vasculogenesis. (65, 66). The 
molecular mechanisms underlying this 
paradox is unknown: both angiogenic 
(63, 64) and angiostatic (67, 68) factors 
have been detected in early SSc. Par-
vovirus B19 and HCMV infections in 
bone marrow (54, 69) might account for 
the defective vasculogenesis observed 
in SSc, due to their ability of causing 
myelosuppression (70, 71). In fact, one 
of the main pathogenic hypothesis is 
that the production or recruitment of 
hematopoietic endothelial progenitor 
cells from bone marrow might be im-
paired in SSc patients thus contribut-
ing to endothelial dysfunction and poor 
vasculogenesis in this disease (72-74).

Concluding remarks and future 
perspectives.
We have summarised the most compel-
ling evidences in favor of a viral eti-
opathogenesis of SSc, that are limited 
to CMV and Parvovirus B19. Given the 
high number of viral agents capable of 
infecting human tissues (75), it may be 
provokingly argued that researchers in 
the SSc field should increase their ef-
forts in order to gather new insight on 
the possible mechanistic associations 
between the many viral species com-
monly infecting humans and SSc. Be-
ing the etiology of SSc still largely 
obscure as well as largely unexplained 
are the early pathogenic steps of the dif-
ferent tissue lesions characterising this 
multisystem disorder, we believe this 
topic deserves attention. Research for 

additional viral triggers of SSc should 
benefit from upcoming tools enabling 
the study of the human virome (76) and 
from novel transgenic animal models 
suitable for in vivo testing of identi-
fied candidate viral culprits, following 
the example of other rheumatic dis-
eases with a suggested etiopathogenic 
relationship with viral infections (77). 
Remarkable, from this perspective, is 
the seminal work of Stappenbeck and 
Virgin groups (78) on the multifactorial 
etiopathogenesis of Crohn’s disease. 
This study represents a paradigm of the 
complex interplay between the different 
components underlying an immune-
mediated chronic inflammatory disease, 
where specific and non-specific agents 
concur to disease onset and progression, 
and clarifies how environmental fac-
tors including infections may select in 
a pool of individuals with common ge-
netic backgrounds (79) those who will 
develop disease from those who will 
remain unaffected. Finally, novel con-
cepts on the role of viral infections in 
altering the normal immunoregulatory 
mechanisms, such as the interaction be-
tween autoantigen-presenting cells and 
autoreactive effector cells (80), should 
be instrumental to the identification of 
further links between viral agents and 
SSc development.  
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