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Abstract
Objective

Circulating proangiogenic haematopoietic cells (PHCs), including CD34+ cells, play an important role in endothelial 
homeostasis. Among PHCs, CD34+ cells are the largest cell population, thus, much of the regenerative/reparative potential 

of PHCs may be attributed to CD34+ cells. Our aim was to determine the association between inflammation and CD34+ 
cell number, intracellular levels of reactive oxygen species (ROS) and expression of Toll-like receptor 3 (TLR3) and 

interleukin 1β (IL-1β), arterial stiffness (AS) indices, and carotid intima-media thickness (cIMT) in patients affected by 
rheumatoid arthritis (RA).

Methods
CD34+ cells were isolated from 24 RA patients and 26 matched controls. ROS levels, TLR3 and IL-1β expression were 

measured. C-reactive protein (CRP), fibrinogen, AS, and cIMT were also evaluated. 

Results
CD34+ count was lower in RA patients as compared to controls. In CD34+ cells from RA patients, ROS, TLR3 and IL-1β 
expressions were increased compared to controls. In RA patients, we found higher CRP and fibrinogen levels, and higher 
values of Pulse Wave Velocity (PWV) and Augmentation Index (AIx), both AS indices, and of cIMT.  CD34+ cell numbers 

were inversely correlated with CRP, TLR3, IL-1β, ROS, and AS indices. TLR3 levels were related to CRP, IL-1β, 
fibrinogen and ROS. IL-1β levels were correlated with expression of CRP, ROS, and PWV.

Conclusion
Inflammatory status in RA is associated with an increased expression of TLR3 and of IL-1β in CD34+ cells, which 
appear to affect cell number. These new findings suggest a perspective on accelerated atherosclerosis and vascular 

damage in RA. 
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Introduction
Circulating proangiogenic haematopoi-
etic cells (PHCs) (1, 2) are multipotent 
circulating cells derived from bone 
marrow that have been proven capable 
of angiogenic and reparative proper-
ties in vivo. PHCs are a heterogeneous 
population of cells in different states of 
maturation with the ability to differen-
tiate into cell types of different organs 
and systems, including cardiomyocytes, 
smooth muscle cells, and endothelial 
progenitor cells (3, 4). They are differ-
ent from endothelial forming colony 
cells and, although to date it is not clear 
if they can give rise to mature endothe-
lial cells (ECs) in vivo, it is currently 
accepted that PHCs can work as proan-
giogenic support cells, maintaining im-
portance in terms of regenerative/repar-
ative potential and prognostic value (4). 
PHCs have been shown to contribute 
to postnatal vasculogenesis and vascu-
lar damage repair both directly and via 
paracrine effects (1), participating in 
healthy and damaged endothelial turno-
ver and angiogenesis. They are nega-
tively affected by risk factors for cardio-
vascular disease (CVD) and positively 
by changes in lifestyle (5); consequent-
ly, their number is considered an inde-
pendent predictor of CVD, and morbid-
ity/mortality also for non-CV causes, 
even among healthy subjects and in the 
elderly (6-8). Moreover, CD34+ cells are 
the largest cell population (including 
also their subsets, multiple positive phe-
notypes CD34+/CD133+, CD34+/KDR+, 
and CD34+/CD133+/KDR+) among 
PHCs; much of the regenerative/repara-
tive potential of PHCs may be attributed 
to CD34+ cells.
Rheumatoid arthritis (RA) represents 
a human model of chronic inflamma-
tory disease presenting with acceler-
ated atherosclerosis and increased rate 
of cardiovascular disease (9-10). The 
molecular mechanisms underlying the 
increased incidence or accelerated on-
set of CVD in patients with RA have 
not been fully clarified; systemic in-
flammation may have a key role, since 
it was shown that the pathogenesis and 
aetiology of RA and CVD share many 
common cellular and molecular media-
tors (11). Several pro-inflammatory cy-
tokines, including TNF-α, C-reactive 

Protein (CRP) and interleukin-6 re-
leased from synovia into the systemic 
circulation, affect endothelium homeo-
stasis promoting its pro-atherogenic 
activation and dysfunction (12).
It has already been shown in RA that 
PHCs are recruited by specific adhe-
sion molecules into the joints, par-
ticipating in synovial neoangiogenesis 
(13). While PHCs are recruited into 
the rheumatic tissue, depletion may 
occur in peripheral blood, potentially 
compromising endothelial repair and 
leading to vascular lesions (14, 15). Al-
though it has been hypothesised that in 
this condition cell decrease may con-
tribute to the increased cardiovascular 
risk in RA, additional factors appear 
capable of modulating the number and 
activity of progenitor cells in chronic 
inflammatory disorders (16, 17).
Toll-like receptor-3 (TLR3) is a pat-
tern recognition receptor that plays an 
important role in the activation of in-
nate immunity and priming of adap-
tive immunity against pathogens and 
“danger signals”, including factors re-
leased from stressed or damaged cells 
and tissue (18, 19). TLR3 and inter-
leukin 1-β (IL1-β) have been detected 
in EPCs from human umbilical cord 
blood, and their involvement in cell 
cycle progression and proliferation has 
been suggested (20). IL1-β, which is 
synthesised as a precursor peptide, is 
activated in response to various pro-in-
flammatory stimuli, also via TLRs (21-
23). In particular, it has been shown that 
in cultured EPCs from human umbili-
cal cord blood, the activation of TLR3 
by the synthetic double stranded RNA 
analogue polyriboinosinic-ribocyti-
dylic acid (polyI:C) inhibits cell cycle 
progression and induces caspase-inde-
pendent cell apoptosis, which is, at least 
in part, related to increased expression 
of IL1-β (20); additionally, TLR3 ac-
tivation by polyI:C in cultured PHCs 
was found to increase reactive oxygen 
species (ROS) production and cell ap-
optosis (24). The activation of TLR3 is 
consequently thought to affect progeni-
tor cell number and function and may 
consequently compromise vascular re-
pair and angiogenesis (25). 
In the present study, we analysed ex-
pression of TLR3 and IL1-β in CD34+ 
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cells from untreated patients affected 
by RA, and without additional risk fac-
tors for atherosclerosis or CVD. An 
observational cross sectional study was 
designed to investigate the relation-
ships between CD34+ cell number, in-
tracellular ROS levels, TLR3 and IL1-β 
expression, and systemic inflammation. 
Arterial stiffness indices (AS) and ca-
rotid intima-media thickness (cIMT), 
both patterns of preclinical atheroscle-
rosis (26), were also evaluated in rela-
tion to inflammatory markers, CD34+ 
cell number, ROS, TLR3 and IL1-β 
expression.

Materials and methods
Subjects
Between October 2012 and May 2013, 
597 outpatients were examined for the 
first time at the Rheumatology Division 
of the University of Messina and were 
referred for a clinical and instrumen-
tal screening; according to inclusion/
exclusion criteria, only 24 subjects (15 
men and 9 women) were considered eli-
gible for this study: to be recruited for 
the study, subjects needed to be newly 
diagnosed, untreated, not have addi-
tional risk factors for atherosclerosis or 
CVD, and meet the retrospective appli-
cation of the 1987 revised RA criteria of 
the American Rheumatism Association 
(27); additionally, they should never 
have been treated with immunosuppres-
sive drugs, long-term corticosteroids 
and/or NSAIDs nor DMARDs. Sub-
jects with co-morbidities, such as diabe-
tes mellitus, dyslipidaemia (defined as 
plasma levels of cholesterol ≥230 mg/dl 
or low-density lipoprotein cholesterol 
[LDL-C] ≥160 mg/dl, or triglycerides 
≥250 mg/dl), hypertension (defined 
as systolic blood pressure [SBP] ≥140 
mmHg and/or diastolic blood pressure 
[DBP] ≥90 mmHg) were excluded from 
the study. Smokers were also excluded 
from the study. Women taking hor-
mone-based therapy were not included 
in the study. Thyroid, liver or kidney 
diseases, body mass index (BMI) ≥30, 
alcohol consumption, abnormal elec-
trocardiographic or echocardiographic 
(left ventricular ejection function, left 
ventricular regional function) pattern, 
and clinical history of CVD were also 
considered as exclusion criteria. No 

subjects were taking any drugs, includ-
ing antioxidant vitamins. Patients previ-
ously treated with NSAIDs should not 
take drugs for at least two weeks before 
inclusion. 
Twenty-six subjects (15 men and 11 
women) matched for age and gender 
were enrolled from hospital personnel 
as control subjects. After inclusion in 
the study, patients and controls under-
went blood sampling and instrumental 
examination as described below; pa-
tients were then referred to the rheu-
matology clinic for clinical and thera-
peutic follow-up. 
Written informed consent was obtained 
from all subjects according to the Hel-
sinki declaration and the study was ap-
proved by the Ethics Committee of the 
University of Messina.

Methods
All chemical analyses were performed 
at the medical centre after overnight 
fasting. Plasma lipids, glucose, fibrino-
gen, and rheumatoid factor (RF) were 
determined by routine methods. CRP 
and anti-cyclic citrullinated peptide an-
tibodies (aCCP) were determined by a 
commercially available ELISA kit. 
Fresh blood flow cytometry (FACS 
Calibur; Becton Dickinson and Co., 
Franklin Lakes, NJ, USA) was used to 
identify the cells. Circulating cells that 
expressed the stem cell antigen CD34 
were defined as progenitor cells, and es-
timated and counted (cells/μL).
Expression of TLR3 and IL-1β -mRNA 
in circulating CD34+ cells was evaluat-
ed after the enrichment of the samples in 
CD34+ cells by immunomagnetic sort-
ing with the MiniMACS system (Milte-
nyi Biotec Inc, Auburn, CA, USA).
To perform molecular analyses on 
CD34+ cells, 50 ml of blood was col-
lected from each subject and immedi-
ately processed; mononuclear cells were 
separated from other blood components 
using a gradient separation method. 
CD34+ cell sample enrichment, mRNA 
extraction and reverse transcription, 
polymerase chain reaction, and valida-
tion procedure have already been ex-
plained in detail elsewhere (28); briefly, 
after the isolation of mononuclear cells 
by density centrifugation and after en-
richment of the samples in CD34+ cells 

by the MiniMACS system (Miltenyi 
Biotec Inc., CA, USA), expression of 
TLR3 and IL1-β was evaluated. Cell 
enrichment was validated by flow cy-
tometry, confirming that at least 90% 
of separated cells were CD34+ (Fig. 1). 
Total RNA was then extracted, quanti-
fied and retro-transcribed. cDNA was 
used to measure gene expression of 
TLR3 and IL1-β by real time poly-
merase chain reaction (RT-PCR), using 
β-actin as endogenous controls for final 
normalisation; relative expression was 
measured using the 2−ΔΔCt method. For 
this method, average values of TLR3 
and IL1-β in samples from all control 
subjects were considered as the calibra-
tor (1×sample). Results were expressed 
as an n-fold difference relative to the 
mean value (relative expression levels).
ROS generation in CD34+ cell-enriched 
samples was assessed using 2,7-dichlor-
ofluorescin diacetate (DCFH-DA), by 
fluorimetric method (29). Data are ex-
pressed as fluorescence intensity rela-
tive units (FU).

Measurement of cIMT and AS indices
Carotid echo Doppler scan and arterial 
stiffness assessment were performed 
using Aloka ProSound ALPHA 10 with 
a 7–15 MHz linear array transducer. 
Semi-automated cIMT was evaluated 
bilaterally on the far wall in the areas of 
the common carotid (1cm proximal to 
the carotid bulb), the carotid bifurcation 
(1cm proximal to the flow divider) and 
the internal carotid artery (1cm distal 
to the flow divider). According to ESC/
ESH guidelines, we considered as ca-
rotid wall thickening a cIMT ≥0.9 mm 
or plaque. Augmentation Index (AIx) 
and Pulse wave velocity (PWV) as AS 
indices were measured automatically 
by “eTRACKING” software. An exten-
sive explanation of the mechanical and 
physical bases of this analysis has pre-
viously been provided (30).

Statistical analysis
The Kolmogorov Smirnov test verified 
that some variables had a non-normal 
distribution; consequently, given also 
the small size of our sample, we chose 
to use a permutation test-based anal-
ysis. This subset of non parametric 
statistics, widely used in biomedical 
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research, is considered preferable to 
the classic non-parametric approach 
(31), since it is based on more real-
istic foundations, it is intrinsically 
robust, the resulting inferences are 
credible and it estimates the whole 
data distribution exploiting all infor-
mation contained in the sample (31). 
Accordingly, data were expressed as 
mean±standard deviation (SD). Com-
parisons were carried out by the Non 

Parametric Combination test (NPC 
test), which is based on a simulation 
or resampling procedure, conditional 
on the data, providing a simulated es-
timate of the permutation distribution 
of any statistic (32).
Moreover, in order to verify the re-
sults obtained with this approach, we 
integrated the statistical analysis with 
a traditional non-parametric approach 
(median and IQR), and, consequently, 

the comparisons between variables 
were carried out by the Mann-Whitney 
U-test. Correlations among variables 
were assessed by Spearman’s test. To 
assess the contribution of each vari-
able on study variables a linear, step-
wise, multivariate regression analysis 
was performed that allows considering 
continuous and categorical variables to-
gether on the whole study population. 
A two-tailed alpha of 0.05 was used to 
denote statistical significance. SPSS 
statistical package, ver. 17.0 (Chicago, 
IL, USA), was used to perform statis-
tical analyses, along with the NPC test 
2.0 – Statistical software for multivari-
ate permutation tests (Methodologica 
srl, Treviso, Italy).

Results
Table I shows the baseline characteris-
tics of the study groups. No difference 
was detected with regard to age, BMI, 
gender, BP, glucose, lipids. Fibrinogen, 
CRP and ESR were significantly higher 
in RA patients compared to controls 
(p<0.001). Antibody status was also 
evaluated: 18 out of 24 patients were 
RF positive; of these, 11 were also 
aCCP positive; 6 patients were both RF 
and aCCP negative. 
PWV and AIx were significantly high-
er in RA patients compared to con-
trols (both p<0.001), also cIMT values 
were increased compared to controls 
(p<0.001) and, on average, above 0.9 
mm, considered the upper reference 
limit for preclinical atherosclerosis ac-
cording to ESH-ESC guidelines (33).
Figure 2 shows box and whiskers plots 
for PWV, AIx, TLR3, IL- 1β, ROS and 
CD34+ cells in RA and control subjects.
In RA patients, the number of CD34+ 
cells was significantly lower com-
pared to controls (p<0.001), and cells 
isolated from RA patients displayed 
higher levels of ROS (p<0.001). In RA 
patients, expression of TLR3 and IL-
1β mRNA was higher than in controls 
(both p<0.001).
In RA patients, a positive correlation 
was found between TLR3 and: CRP 
(rs=0.435 p<0.05), IL-1β (rs=0.687, 
p<0.001), fibrinogen (rs=0.437, 
p<0.05), and ROS (rs=0.501 p<0.02). 
IL-1β levels were also correlated with 
expression of: ROS (rs=0.482 p<0.02), 

Fig. 1. Purity plot of CD34+ 
cells enriched sample

Table I. Characteristics of the study population.

	 RA	 Controls	 p-value
Number	 24	 26	 NS
Gender (m/f)	 15/9	 15/11	 NS

	 Mean±SD	 Median (IQR)	 Mean±SD	 Median (IQR)	 NPCT	 Mann-	
						      Whitney

Age (years)	 48.5	±	7.14	 48	 (11)	 46.4	±	2.4	 46.5	 (1.75)	 NS	 NS
BMI (kg/m2)	 25.1	±	2.6	 25	 (4.3)	 24.3	±	2.1	 24.5	 (3.4)	 NS	 NS
SBP (mmHg)	 125.8	±	6.6	 126	 (10)	 122.7	±	9.5	 122.5	 (10)	 NS	 NS
DBP (mmHg)	 73.8	±	4.4	 70	 (10)	 72.5	±	6.3	 75	 (10)	 NS	 NS
TC (mg/dl)	 196.5	±	38.5	 190	 (53)	 181.3	±	63.9	 180	 (40)	 NS	 NS
HDL-C (mg/dl)	 52.3	±	11.1	 52	 (13.5)	 51.5	±	9.2	 50	 (12)	 NS	 NS
TG (mg/dl)	 123.3	±	48	 125	 (65)	 110.7	±	22.2	 111.5	 (32.2)	 NS	 NS
LDL-C (mg/dl)	 126.6	±	30.8	 122	 (39)	 112.1	±	24	 118.2	 (46)	 NS	 NS
Glucose (mg/dl)	 88.5	±	10.9	 88	 (18.5)	 87.6	±	7.1	 88	 (11.2)	 NS	 NS
Hs-CRP (mg/dl)	 5.33	±	4.31	 4.55	 (4.25)	 0.62	±	0.3	 0.62	 (0.8)	 0.001	 0.001
Fibrinogen (mg/dl)	 389.2	±	52	 398	 (62.5)	 260	±	57.7	 256	 (109)	 0.001	 0.001
CD34+(cells/μL)	 1.90	±	0.63	 1.85	 (0.95)	 2.52	±	1.14	 2.6	 (2)	 0.01	 0.03
TLR3 (n-fold)	 1.54	±	0.48	 1.45	 (0.48)	 1	±	0.3	 1	 (0.4)	 0.001	 0.001
IL-1β (n-fold)	 1.65	±	0.37	 1.76	 (0.34)	 1	±	0.25	 1	 (0.5)	 0.001	 0.001
ROS (FU)	 114.2	±	62.3	 86.4	 (108.9)	 47.7	±	11.9	 51	 (10.4)	 0.001	 0.001
AIx (%)	 10.21	±	7.31	 8.8	 (13.4)	 -3.57	±	4.5	 -3.0	 (5.26)	 0.001	 0.001
PWV (m/s)	 7.48	±	1.65	 7.3	 (2.2)	 4.54	±	0.8	 4.85	 (1.1)	 0.001	 0.001
IMT (mm)	 1.11	±	0.14	 1.15	 (0.25)	 0.77	±	0.16	 0.79	 (0.24)	 0.001	 0.001

Values are mean±SD. BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pres-
sure; TC: total cholesterol; HDL-C: high density lipoprotein-cholesterol; TG: triglycerides; LDL-C: 
low density lipoprotein cholesterol; Hs-CRP: high sensitivity C-reactive protein.; AIx: augmentation 
index; PWV: pulse wave velocity; cIMT: carotid intima-media thickness; Toll-like receptor 3; IL-1β: 
Interleukin 1β; p-value: p-value level for NPC-test/Mann-Whitney U-test, RA patients vs. controls.
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CRP (rs=0.530 p<0.02), and PWV 
(rs=0.434, p<0.05). In RA, no correla-
tion was found between vascular param-
eters (AS indices and cIMT) and CRP. 
We verified whether any correlation 
exists between CD34+ cell number, 
inflammatory markers (CRP, Fibrino-
gen), TLR3 and IL-1β levels, ROS, AS 
indices (PWV and AIx) in RA patients.
In RA patients, the number of CD34+ 
cells correlated inversely with CRP 
(rs=-0.524, p<0.01), Fibrinogen (rs=-
0.414, p<0.05), IL-1β (rs=-0.673, 
p<0.001), TLR3 (rs=-0629, p<0.001), 
ROS (rs=-0.454, p<0.01), and AIx (rs=-
0.433, p<0.05). Dependence analysis 
suggested that the main variable asso-
ciated to CD34+ cell number was IL-1β 
(β=-0.772, p<0.001), which in turn ap-
peared associated to TLR3 (β=0.786, 

p<0.001) and CRP (β=0.222, p<0.01); 
CRP also appeared to affect TLR3 
(β=0.509, p<0.001). 
Correlations between CD34+ cell num-
ber and CRP, ROS, TLR3 and IL-1 β 
are shown in Figure 3.

Discussion
The mechanisms behind the higher in-
cidence of coronary heart disease in 
RA patients are to date not fully under-
stood, but it is likely that incidence may 
be linked to vascular inflammation and 
vascular endothelial injury, and conse-
quently to accelerated atherosclerosis, 
which are common in RA patients. Ho-
meostasis of the intimal layer relies on 
the contribution of circulating cells that 
participate in the turnover of healthy 
and damaged endothelium, as well as 

in angiogenesis (34). However, in the 
last few years, several cell phenotypes 
have been proposed as EPCs and con-
sidered as potential spare cells, able to 
participate in the turnover of healthy 
and damaged vascular endothelium; 
their number has been considered as an 
independent predictor of CV risk, even 
in healthy subjects (3, 4, 6, 7, 35). The 
question of which cell phenotype better 
identifies the “true” circulating EPC re-
mains unsolved, since the more widely 
studied PHC phenotypes do not give 
rise to mature ECs and are different 
from endothelial forming colony cells 
(2, 36). However, it is currently ac-
cepted that, although PHCs are derived 
from hematopoietic lineage, they can 
work as proangiogenic support cells, 
maintaining importance as regenera-
tive/reparative potential, and prognostic 
value (2, 4, 28, 37, 38). We have chosen 
to limit the investigation to CD34+ cell 
phenotype, since, apart from this sub-
set, the other main PHC phenotypes 
are relatively rare in peripheral blood. 
Thus, to extend molecular studies to 
each PHC phenotype would require 
considerable effort and large amounts 
of blood from each patient to isolate a 
reasonable number of cells and allow 
enzyme expression assessment; moreo-
ver, it has recently been suggested that 
expression of CD34 surface antigen 
may display an important role in angio-
genic cell properties (39).
Among the factors that could lead to a 
reduction of cells, inflammation may 
play a prominent role. It has been well 
established that in an inflammatory 
status EPC function is impaired, and 
several inflammatory mediators play 
a dual role in EPC mobilisation (40): 
low-grade inflammation induces EPC 
mobilisation, whereas high-grade and 
prolonged inflammatory stimulation 
has the opposite effect. The effects of 
long-term proinflammatory stimulation 
on bone marrow are not well known, 
but it is likely that it may lead to ex-
haustion of the PHC pool with release 
of immature or dysfunctional progeni-
tors. In accordance with previous stud-
ies, we found a reduced CD34+ cell 
number in patients affected by RA, 
which appears directly related to the 
increased levels of CRP. Furthermore, 

Fig. 2. Box and whiskers plots for PWV (a), AIx (b), TLR3 (c), IL-1β (d), ROS (e) and CD34+ (f) in 
RA patients and controls. *p<0.001 vs. controls. Solid horizontal lines: median values; error bars: 95% 
confidence intervals; shaded area: interquartile range. 



927

TLR3 and IL-1β in circulating progenitors in RA / A. Lo Gullo et al.

multiple regression analysis confirmed 
a significant role of CRP in impairing 
CD34+ cell number. 
CRP, an acute phase protein predomi-
nantly produced in the liver, is to date 
considered a potential causal factor in 
atherogenesis and is independently as-
sociated with increased risk of fatal and 
non fatal cardiovascular events, even 
in apparently healthy individuals (41). 
CRP is capable of inhibiting EPC differ-
entiation, survival and function in vitro 
(42); it impairs EPC antioxidant poten-
tial, and may promote EPC sensitivity 
toward oxidant-mediated apoptosis and 
telomerase inactivation (43). However, 
CRP, in addition to having a direct effect 
on cells, could also alter the number, in-
creasing expression of TLR3 and IL-1β.
TLRs are expressed on several immune 
cells, including macrophages, dendritic 
cells, B cells, specific types of T cells, 
and even on non-immune cells such 
as fibroblasts, and epithelial cells (44). 
These receptors recognise an enormous-
ly diverse range of ligands, including 
exogenous molecules derived from in-
vading microbes, pathogen-associated 
molecular patterns (PAMPs), and en-
dogenous molecules created or up-reg-
ulated upon tissue injury, damage-as-
sociated molecular patterns (DAMPs). 
Ligand binding induces receptor con-
formational changes and results in the 
recruitment and/or activation of adaptor 
molecules that initiate a cascade of in-
flammatory signalling events (19). Yang 
et al. showed that TLR3 and IL-1β are 
functionally expressed in EPCs, and 
activation impairs cell proliferation, in-
hibits cell cycle progression and induces 
apoptosis (20). 
The increased expression of TLR3 in 
inflammatory conditions, including RA, 
has been already reported in several cell 
types such as dendritic cells, synovial fi-
broblasts, macrophages, and endothelial 
cells (45, 46); furthermore, it has been 
reported that inflammatory molecules 
such as IFN-α are capable of up-regu-
lating TLR3 transcription in mesenchy-
mal stromal cells (46). 
In this study, we found an increased 
expression of TLR3 and IL-1β also in 
CD34+ cells from RA patients, and that 
increase was related to higher CRP plas-
ma levels. These observations, there-

Fig. 3. Spearman’s 
correlation between 
CD34+ cell number 
and CRP (a), ROS 
(b), TLR3 (c), and 
IL-1β (d) in RA sub-
jects; Spearman’s co-
efficient (rs) is shown 
with its significance 
(p).
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fore, could confirm a modulation of in-
flammation on the expression of TLR3 
also in circulating CD34+ cells.
The activation of TLR3 generally leads 
to an inflammatory cascade and release 
of cytokines including IL-1β (19). IL-
1β, a pleiotropic pro-inflammatory cy-
tokine, is involved in apoptosis of differ-
ent cell types (47, 48) and could inhibit 
cell proliferation in endothelial progeni-
tors (20); moreover, it has recently been 
shown that TLR3 activation in cord 
blood-derived endothelial cell causes 
cell proliferation inhibition, cell cycle 
entry modifications, impairment of in 
vitro angiogenic properties and pro-in-
flammatory cytokines production (25).
Consistent with previous observations, 
we found that decreased levels of cir-
culating CD34+ cells were related to a 
higher expression of IL-1β. Thus, we 
could speculate that TLR3 activation 
leads to de novo cytokine generation 
and may strengthen a pre-existing in-
flammatory status associated with rheu-
matic synovium (45). Therefore, TLR3 
could indirectly alter the function of 
PHCs (19), reducing their number.
Additionally, TLR3 could affect the cells 
through the stimulation of ROS produc-
tion. RA patients displayed higher ROS 
levels which were related to expression 
of TLR3 and IL-1β and were also re-
lated to decreased number of cells. Zim-
mer et al. reported that ROS production 
was increased by TLR3 stimulation 
and remarked that the rapid formation 
of ROS in response to the activation of 
TLR3 by immune cells is an important, 
defensive mechanism against pathogens 
(24). Although PHCs have an excellent 
anti-oxidant system, it has been reported 
that its function can be impaired by in-
flammation (17).
Our results, although they cannot pro-
vide a mechanistic model by which the 
inflammatory status could lead to the 
impairment of circulating CD34+ cells, 
appear to suggest that CRP elevation 
may be the trigger that promotes over-
expression of TLR3 and, consequently, 
of IL-1β, which in turn was found to 
be associated to cell decrease. We also 
confirmed that RA patients present with 
altered AS indices. The association be-
tween inflammation and arterial stiff-
ening has already been suggested by 

several studies in patients with chronic 
inflammatory diseases, including RA 
(17, 26, 49); AS is widely established 
as an integrated marker of arterial dis-
ease, and a valuable predictor for future 
cardiovascular disease and death, and 
is considered the first reversible step in 
atherogenesis (50). It is likely that a clin-
ical condition characterised by a chronic 
inflammatory status and impaired repar-
ative/regenerative endothelial potential 
also due to reduced PHC cell number 
may at least in part explain the accelerat-
ed progression of endothelial functional 
damage (arterial stiffening) to more ad-
vanced vascular damage (intima-media 
thickening) and development of CVD 
also in patients without personal risk 
factors for CVD.
This study, however, presents several 
limitations. The first limitation is the 
small sample size; according to inclu-
sion/exclusion criteria we enrolled only 
24 patients. Second, we investigated 
the association between inflammation 
and TLR3 and IL-1β levels in CD34+ 
cells without a focused investigation on 
mechanistic and pathophysiological as-
pects that could explain this association, 
but this was not the purpose of the study. 

Conclusion
In conclusion, these data suggest that 
chronic inflammatory status is associ-
ated to overexpression of TLR3 and 
IL-1β in CD34+ cells from RA patients. 
Furthermore, the increased CD34+ cell 
expression of IL-1β and TLR3 appears 
to be linked to reduced circulating cell 
number, and consequently to an im-
paired reparative/regenerative endothe-
lial potential. It is likely that this novel 
association may at least in part contrib-
ute to explaining the increase of cardio-
vascular morbidity and mortality in pa-
tients suffering from RA. Further stud-
ies on larger sample sizes could clarify 
whether the modulation of TLR3 or IL-
1β expression in PHCs, also by therapy 
or specific drugs, may modify CV risk 
in patients affected by RA.
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