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ABSTRACT
Objective

Systemic lupus erythematosus (SLE) is the most common systemic autoimmune disease which likely involves complex 
interactions between genes and the environment. Two large-scale genome-wide association studies (GWAS) have 

implicated many loci as genetic risk factors associated with primary Sjögren’s syndrome (pSS). Among them there are 
a number of pSS associated gene polymorphisms including the MHC-II, STAT4, IRF5, BLK, and TNIP1 genes that are 

shared with SLE. However, the association of other genes such as GTF2I, GTF2IRD1, and IL12A with SLE remain 
unknown. This study aimed to determine whether single nucleotide polymorphisms (SNPs) in GTF2I, GTF2IRD1 or IL12A 

genetically predispose a Chinese Han population to SLE.

Methods
Four SNPs in the GTF2I region (rs117026326), the GTF2IRD1 region (rs4717901), and the IL12A region (rs485497, 

rs583911) were genotyped in a cohort of 948 SLE patients and 938 healthy controls, using the polymerase chain 
reaction-ligation detection reaction (PCR-LDR) method.

Results
The frequency of risk allele of rs117026326 was notably higher in SLE patients than in controls (37.2% vs. 14.9%, 

OR: 3.39, 95%CI: 2.89-3.97, pc =3.31×10-54). Similarly, rs4717901 was also associated with SLE (35.3% vs. 20.2%, 
OR: 2.16, 95%CI: 1.86-2.50, pc =1.50×10-24). The frequencies of alleles and genotypes of IL12A SNPs were not 

significantly different between the SLE patients and controls.

Conclusion
This study demonstrates a significant association between SLE and the GTF2I rs117026326 T allele, GTF2IRD1 

rs4717901 C allele. The association of GTF2I and GTF2IRD1 as common genetic susceptibility factor in SLE will 
require further validation in other ethnic lines.
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Introduction
Systemic lupus erythematosus (SLE) 
is a chronic, systemic, inflammatory 
autoimmune disease that causes tissue 
or organ damage characterised by a di-
verse array of autoantibody production, 
complement activation and immune 
complex formation (1, 2). The aetiol-
ogy and pathogenesis of SLE involves 
genetic, epigenetic, and environmental 
factors. Of note, genetic factors play 
an important role in the susceptibility 
to the disease. More than 100 possible 
genetic risk factors for SLE have been 
identified (3, 4). 
Primary Sjögren’s syndrome (pSS) 
shares many features with SLE in-
cluding the postive of anti-SSA/SSB 
antibodies, a similar interferon-α gene 
signature, activation of interferon (IFN) 
pathways, recruitment of plasmacytoid 
dendritic cells, and other aspects of im-
mune activation (5, 6). Several reports 
have demonstrated the coexistence of 
SLE and pSS. Patients with pSS can 
later develop SLE with secondary SS. 
Moreover, 17.8% of SLE patients pre-
sented with SS/SLE (7). SLE with sec-
ondary SS and pSS has a common ge-
netic background (8-11), the same HLA 
alleles are associated with the anti-SSA/
SSB antibodies presence pattern: HLA 
DRB1*15 associated with presence of 
anti-SSA antibody alone and DRB1*03 
associated with secretion of both anti-
SSA and anti-SSB antibody (12, 13). 
Two recent large-scale genome-wide 
association studies (GWAS) involv-
ing Chinese populations led to the 
discovery and validation of multiple 
susceptibility loci for pSS (14, 15). 
Our previous GWAS showed that 
GTF2I, located at 7q21, was the most 
strongly associated gene in the Chinese 
Han pSS patients, and had higher OR 
scores than other pSS associated iden-
tified genes including MHC-II genes, 
STAT4, and TNFAIP3 (14). GTF2I en-
codes the general transcription factor 
IIi (TFII-I). TFII-I plays an important 
role in signal-induced transcriptional 
regulation of both B cells and T cells 
(16). Another susceptibility locus, GT-
F2IRD1, which its molecular function 
has not been fully studied, has been 
reported to be involved in mammalian 
craniofacial and cognitive development 

(17). Insufficiency of GTF2IRD1 pro-
tein contributes to abnormalities of fa-
cial development, motor function and 
specific behavioural disorders that ac-
company Williams-Beuren syndrome 
(18). GWAS found that seven variants 
in the IL12A (encoding interleukin-
12A) region demonstrated strong as-
sociation, with the peak association at 
rs485497, and only rs485497 was as-
sociated with IL12A transcript expres-
sion. IL12A gene encodes a subunit 
of a cytokine that has a critical role in 
the production of IFN-γ by T cells and 
natural killer cells and the differentia-
tion of both Th1 and Th2 cells (19). So 
far, reports on IL12A region in SLE are 
absent. However, association of SNP 
variants within the 3́ end of the IL12A 
gene in primary biliary cirrhosis (PBC) 
and 5́ end of the IL12A gene in coe-
liac disease (20, 21). Other studies have 
revealed associations of non-Hodgkin’s 
lymphoma (NHL) with an intron region 
SNP, rs485497, which plays a central 
role in bridging the cellular and hu-
moral pathways of innate resistance 
and antigen-specific adaptive immune 
responses (22). Rs583911 has also been 
confirmed as associated with childhood 
acute lymphoblastic leukaemia (ALL) 
in a Chinese population (23).
Considering the genetic overlap in the 
autoimmune diseases and the associa-
tions of these genes with SLE in other 
populations, we hypothesised that some 
of the related polymorphisms of GTF2I, 
GTF2IRD1 and IL12A may also con-
tribute to genetic susceptibility to SLE 
in a Chinese Han population. Then, we 
developed the first large case-control 
study to determine out the relationship 
between GTF2I, GTF2IRD1 and IL12A 
polymorphisms and SLE.

Materials and methods
Patients and controls 
This study was designed as a case-
control including 948 patients with 
SLE and 938 healthy unrelated ethni-
cally-matched controls recruited and 
enrolled in the Rheumatology Depart-
ment of Peking Union Medical Col-
lege Hospital (PUMCH). All SLE pa-
tients met the 1997 American College 
of Rheumatology (ACR) classification 
criteria for lupus (24). As we all know, 



634

Association of GTF2I and GTF2IRD1 polymorphisms with SLE / Y. Li et al.

anti-SSA/B antibodies were specific 
diagnostic markers of pSS. pSS pa-
tients commonly experience fatigue, 
pain and cognitive symptoms. Lupus 
nephritis was a manifestation of SLE 
resulting from glomerular immune 
complex deposition and inflammation. 
So, we stratified SLE patients based 
on 12 subphenotypes, including anti-
SSA/B antibodies, anti-Sm antibodies, 
anti-RNP antibodies, anti-dsDNA anti-
bodies, low C3 or C4 levels, nephritis, 
neurological disorder, arthritis, haema-
tologic disorder, rash and SLE/pSS. In 
SLE patients, autoantibodies includ-
ing anti-nuclear antibodies (ANA), 
anti-dsDNA, anti-SSA/B, anti-Sm, and 
anti-RNP antibodies were determined 
either by indirect immunofluorescence 
or double immunodiffusion analysis. In 
our study, there were 84 SLE patients 
presented with SS/SLE. Further, in-
formation of other clinical manifesta-
tions was also recorded for each patient 
(Table I). This study was approved by 
the ethics committee of the PUMCH, 
and all study participants provided in-
formed consents.

Genotyping 
Genomic DNA was extracted from 2 
mL ethylenediaminetetraacetic acid 
(EDTA) anticoagulated peripheral 
blood samples by using DNA isolation 
kits from Bioteke (Beijing, China) fol-
lowing the manufacturer’s instructions 
and was stored at -80 °C until used for 
genotype testing. SNP genotyping was 
performed using the PCR-LDR method 
(25, 26) with technical support from the 
Shanghai Biowing Applied Biotechnol-
ogy company. The probe and primer 
sequences for the PCR-based ligase de-
tection reaction in GTF2I, GTF2IRD1 
and IL12A genes have been shown in 
supplementary material I and II. The 
target DNA sequences were amplified 
using a multiplex PCR method. The 
ligation reaction for each subject was 
carried out in a final volume of 20 ul 
reaction mixture containing 2 ul PCR 
buffer, 0.6 ul Mg2+, 2 ul dNTP, 0.2 ul 
Qiagen HotStarTaq Polymerase (QIA-
GEN, Germany), 4 ul Q-solution, 2 ul 
Primer mix and 12.2 ul H2O. This mix-
ture was applied to a thermal cycler for 
amplification. Thermal cycling was per-

formed in the Perkin-Elmer Gene Amp 
PCR Systems 9600. The amplification 
procedure consisted of initial denatura-
tion at 95°C for 15 min, 35 cycles of 
denaturation at 94°C for 30 s, annealing 
at 56°C for 90 s and extension at 72°C 
for 60 s, followed by a final extension 
at 72°C for 7 min. The LDR was per-
formed in a final volume of 10 ul re-
action mixture containing 1 ul buffer, 1 
ul probe mix, 0.05 ul Taq DNA ligase 
(New England Biolabs, Ipswich, MA, 
USA), 4 ul multi-PCR products and 4 
ul H2O. The LDR was performed using 
35 cycles of denaturation at 95°C for 2 
min, annealing at 94°C for 30 s and ex-
tension at 60°C for 2 min. The fluores-
cent products of LDR were differenti-
ated by ABI sequencer 377. The quality 
of genotyping was controlled using 50 
blinded blood duplicates.

Statistical analysis
Hardy-Weinberg equilibrium (HWE) 
was tested using Chi-square (χ2) test. 
Any SNPs that deviated from HWE 
(p<0.05) were excluded from further 
analysis. Mann-Whitney U-test was 
used for evaluating the age distribution 
between cases and controls. Allele and 
genotype frequencies of cases and con-
trols were calculated by χ2-test using 
the PLINKv1.07 whole-genome data 
analysis toolset (http://pngu.mgh.har-
vard.edu/Bpurcell/plink/). The odds ra-
tios (OR) of associations were calculat-
ed with 95% confidence intervals (95% 
CI). Based on different genetic models 
(additive, dominant, and recessive), as-

sociation analyses were performed. The 
p-values were corrected (pc) with the 
Bonferroni correction for multiple test-
ing. pc<0.05 was considered significant.

Results
Characteristics of participants
In this study, 948 SLE patients (male/
female, 85/863) and 938 ethnically- and 
geographically-matched healthy con-
trols (male/female, 84/854) were col-
lected from a Chinese Han population. 
The demographic data and clinical fea-
tures of SLE patients were illustrated in 
Table I. The ages of cases (36.34±12.97 
years) and controls (36.75±10.91 years) 
matched well, according to the Mann-
Whitney U-test (p=0.06). All the four 
polymorphisms were within Hardy-
Weinberg equilibrium for the control 
group (p>0.05) and the call rate >95%. 
The accuracy was 100% as 50 samples 
were duplicately genotyped and the re-
sults were consistent.

Allele and genotype frequencies 
between cases and controls
The distribution of both allelic frequen-
cies and genotypic frequencies of the 
four SNPs was shown in Table II. The 
frequency of rs117026326-T was higher 
in SLE patients than in controls (37.2% 
vs. 14.9%, OR=3.39, 95%CI: 2.89–3.97, 
pc=3.31×10-54). Similarly, rs4717901 
was also associated with SLE (35.3% 
vs. 20.2%, OR=2.16, 95%CI: 1.86-2.50, 
pc=1.50×10-24). Statistical analysis us-
ing multiple logistic regressions in ge-
netic additive, dominant, and recessive 

Table I. Characteristics of the SLE patients and control subjects.

Characterisitic Case (n) Control (n)

Male/femal 85/863 84/854
Age, years (mean±SD) 36.34±12.97 36.75±10.91
anti-nuclear antibodies 928 —
anti-SSA antibodies* 454 —
anti-SSB antibodies* 105 —
anti-Sm antibodies* 184 —
anti-RNP antibodies* 270 —
anti-dsDNA antibodies 445 —
Low C3 or C4 levels 591 —
Nephritis 517 —
Neuropsychiatric disorder 138 —
Arthritis 381 —
Haematologic disorder 305 —
Rash 347 —
SLE/pSS 84 —

*Data were available for 923 patients.
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models showed similar patterns (Table 
III). Rs117026326 and rs4717901 were 
associated with SLE in the additive 
model, dominant model and recessive 
model. Rs485497 and rs583911were 
not risk factors for SLE.

Correlation between SLE SNPs 
and the subphenotypes of SLE
We also examined the associa-
tions between the SNPs and vari-
ous clinical manifestations of SLE. 
SNPs rs117026326 of GTF2I and 
rs4717901of GTF2IRD1 demonstrate 
a correlation with anti-SSA/B antibod-
ies, anti-Sm antibodies, anti-RNP an-
tibodies, anti-dsDNA antibodies, low 
C3 or C4 levels, nephritis, neurological 
disorder, arthritis, haematologic disor-
der, rash and SLE/pSS. Rs485497 of 
IL12A was associated with nephritis 
(OR=0.82, 95% CI: 0.69-0.98, p=0.03) 
and low C3 or C4 levels (OR=0.82, 
95% CI: 0.69–0.97, p=0.02), but the 
association disappeared after Bonfer-
roni correction (pc=0.12 and pc=0.08). 
No association was found between 
rs583911 and any clinical features 
(p>0.05). Risk alleles may correlate 

only with limited clinical features of 
the disease rather than general disease 
susceptibility.

Discussion
To our knowledge, this is the first report 
which indicates an influence of the GT-
F2I, GTF2IRD1 polymorphism in SLE 
in a well-defined cohort of chinese. 
According to two recently conducted 
GWAS, GTF2I, GTF2IRD1 and IL12A 
genes display the strong association 
with pSS. Our study confirmed that 
patients carrying GTF2I rs117026326-
T and GTF2IRD1 rs4717901-C allele 
were at increased risk of develop-
ing SLE in Chinese Han. Moreover, 
rs117026326 and rs4717901 were also 
associated with SLE in different genet-
ic models (additive model, dominant 
model and recessive model). SNPs 
rs117026326 and rs4717901 demon-
strate a correlation with SLE subgroups 
stratified by various clinical manifesta-
tions such as anti-SSA/B antibodies, 
anti-Sm antibodies, anti-RNP antibod-
ies, anti-dsDNA antibodies, low C3 
or C4 levels, nephritis, neurological 
disorder, arthritis, haematologic dis-

order, rash and SLE/pSS. In addition, 
the rs485497 variants significantly as-
sociated with nephritis and low C3 or 
C4 levels in Han Chinese. No evidence 
was found of IL12A SNPs being close-
ly associated with SLE.
GTF2I is a regulator of transcription 
and acts through direct binding to DNA. 
Studies suggest that the GTF2I gene is 
important in the aetiology of autism 
in individuals with social interaction 
problems (27) and considered to be one 
of the main genes responsible for neu-
rocognitive defects in Williams-Beuren 
syndrome (28). TFII-I, encoded by the 
GTF2I gene, is a multifunctional pro-
tein with the role in transcriptional reg-
ulation of critical developmental genes 
that control cell proliferation (c-FOS), 
cell cycle (cyclin D1) and developmen-
tal processes (29). It binds specifically 
to several DNA sequence elements and 
mediates growth factor signalling (30). 
It has a role in the PI3K/AKT signal-
ling pathway (31), which plays a key 
role in diverse physiologic processes, 
including dendritic spine formation 
during development and structural syn-
aptic plasticity (32). 

Table II. Allele and genotype distribution of the GTF2I, GTF2IRD1 and IL12A gene markers in SLE patients and healthy controls.

Gene SNP Allelic test Genotypic test
  
  Allele Case (n) / p pc OR(95% CI) Genotype Case (n) / p pc χ2

   control (n)     control (n) 

GTF2I rs117026326 T 704/279 8.27×10-55 3.31×10-54 3.39(2.89-3.97) T/T 138/15 3.88×10-50 1.55×10-50 227.5
  C 1190/1597    T/C 428/249   
       C/C 381/674   
GTF2IRD1 rs4717901 C 669/379 3.74×10-25 1.50×10-24 2.16(1.86-2.5) C/C 125/39 5.86×10-23 2.34×10-22 102.4
  A 1225/1497    C/A 419/301   
       A/A 403/598   
IL12A rs485497 G 466/503 0.12 0.48 0.89(0.77-1.03) G/G 60/72 0.3 NS 2.391
  A 1428/1373    G/A 346/359   
       A/A 541/507   
IL12A rs583911 A 563/583 0.37 NS 0.94(0.82-1.08) A/A 84/92 0.66 NS 0.82
  G 1331/1293    G/A 395/399   
       G/G 468/447   

SNP: single-nucleotide polymorphism; pc: values after Bonferroni corrections; NS: not significant.

Table III. Analysis of the six SNPs based on three genetic models.

Gene SNP Additive model Dominant model Recessive model

  p OR(95%CI) p OR(95%CI) p OR(95%CI)

GTF2I rs117026326 1..39×10-46 3.37 (2.85-3.98) 6.8×10-42 3.79 (3.13-4.6) 1.67×10-17 10.5 (6.11-18.03)
GTF2IRD1 rs4717901 4.5×10-23 2.13 (1.83-2.47) 5.78×10-20 2.37 (1.97-2.86) 3.75×10-11 3.51 (2.42-5.08)
IL12A rs485497 0.124 0.89 (0.77-1.03) 0.18 0.88 (0.74-1.06) 0.26 0.81 (0.57-1.16)
IL12A rs583911 0.37 0.94 (0.82-0.90) 0.44 0.93 (0.78-1.11) 0.48 0.90 (0.66-1.22)

SNP: single-nucleotide polymorphism. *Bonferroni corrections data not shown.
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GTF2IRD1 is a prime candidate for 
some of the major features of Wil-
liams-Beuren syndrome, presumably 
caused by abnormally reduced abun-
dance of this putative transcriptional 
repressor protein (33). Prior studies 
demonstrated a role for GTF2IRD1 in 
the motoric and anxiety-related abnor-
malities in Williams-Beuren syndrome, 
and suggested basal ganglia and po-
tentially cerebellar abnormalities in 
GTF2IRD1 mice (34). GTF2I and 
GTF2IRD1 contribute to the develop-
ment of neural pathways involved in 
visual spatial cognition and in human 
neurodevelopment and cognition (35). 
pSS patients commonly experience 
fatigue, pain and cognitive symptoms. 
The prevalence of depression in pSS is 
between 30 to 50% (36, 37). Besides, 
Neuropsychiatric systemic lupus ery-

thematosus (NPSLE) may present in 
approximately one-half of patients with 
SLE. Autoantibody mediated vascular 
or neuronal injury seems to play a ma-
jor role in NPSLE. But the underlying 
mechanisms of NPSLE are not clear. 
Our data showed that there was no 
significant difference between NPSLE 
and negative ones. Further study would 
help us clarify if there were any asso-
ciation between neuropsychiatric dis-
order and GTF2I, GTF2IRD1 in both 
pSS and SLE patients. Anti-SSA/B 
antibodies were special antibodies of 
both SLE and pSS. SNPs rs117026326 
of GTF2I and rs4717901of GTF2IRD1 
were associated with SLE patients with 
or without anti-SSA/B antibodies and 
there were no significant difference 
between anti-SSA/B antibodies posi-
tive and negative patients. Moreover, 

the same results were found in SLE/
SS subphenotype. Considering both 
pSS and SLE have strong association 
with GTF2I, GTF2IRD1, these genes 
may be shared with other autoimmune 
diseases. More detailed studies are re-
quired to determine which molecular 
mechanisms are controlled by GTF2I 
and GTF2IRD1 genetic variants. IL-12, 
a pro-inflammatory cytokine, was pro-
duced by Dendritic cells, macrophages 
and B cells (38), which is a central cy-
tokine in pSS pathogenesis, promoting 
activation of the type II IFN system via 
both the innate (natural killer cells) and 
the adaptive (type 1 T-helper cells) im-
mune systems (39). IL12A acts with 
the IL12B subunit to signal as a dimer 
through STAT4 to induce the differen-
tiation of naive CD4+ T cells into type 
1 T-helper cells, thereby causing these 

Table IV. Frequencies of 11 SNPs genotypes with various clinical features.

Subphenotypes Comparison rs117026326(GTF2I)  rs4717901(GTF2IRD1)  rs485497(IL12A)  rs583911(IL12A)

  p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI)

Anti- SSA* P (n=454) vs N (n=469) 0.46 1.07(0.89-1.30) 0.79 0.97(0.81-1.18) 0.54 1.07(0.86-1.32) 0.39 1.09(0.89-1.33)
 P (n=454) vs C (n=938) 3.68×10-43 3.52(2.93-4.24) 1.59×10-17 2.14(1.79-2.55) 0.37 0.92(0.77-1.10) 0.81 0.98(0.82-1.16)
 N (n=469) vs C (n=938) 9.70×10-39 3.29(2.73-3.95) 4.91×10-19 2.19(1.84-2.61) 0.11 0.86(0.72-1.03) 0.21 0.90(0.75-1.07)

Anti-SSB* P (n=105) vs N (n=818) 0.16 0.80(0.59-1.09) 0.027 0.70(0.51-0.96) 0.08 1.33(0.97-1.83) 0.36 1.15(0.85-1.57)
 P (n=105) vs C (n=938) 3.4×10-11 2.80(2.05-3.84) 0.005 1.58(1.15-2.18) 0.4 1.14(0.83-1.57) 0.70 1.06(0.78-1.44)
 N (n=818) vs C (n=938) 1.34×10-54 3.48(2.96-4.100 1.98×10-26 2.25(1.94-2.62) 0.053 0.86(0.74-1.00) 0.26 0.92(0.80-1.06)

Anti-Sm* P (n=184) vs N (n=739) 0.727 0.96(0.76-1.21) 0.29 0.88(0.70-1.12) 0.75 0.96(0.74-1.24) 0.50 0.92(0.72-1.17)
 P (n=184) vs C (n=938) 2.28×10-23 3.38(2.64-4.34) 2.96×10-8 1.99(1.56-2.55) 0.19 0.84(0.64-1.09) 0.19 0.84(0.66-1.09)
 N (n=739) vs C (n=938) 1.34×10-47 3.33(2.81-3.93) 5.80×10-22 2.15(1.83-2.51) 0.18 0.90(0.77-1.05) 0.96 0.99(0.82-1.11)

Anti-RNP* P (n=270) vs N (n=653) 0.55 1.07(0.86-1.32) 0.81 0.97(0.79-1.20) 0.87 0.98(0.77-1.24) 0.82 1.03(0.82-1.28)
 P (n=270) vs C (n=938) 2.65×10-31 3.5(2.81-4.34) 1.13×10-11 2.07(1.68-2.57) 0.24 0.87(0.70-1.09) 0.64 0.95(0.77-1.17)
 N (n=653) vs C (n=938) 4.99×10-44 3.37(2.76-3.89) 2.13×10-20 2.13(1.81-2.50) 0.17 0.76(0.76-1.05) 0.33 0.93(0.79-1.08)

Anti-dsDNA* P (n=445) vs N (n=503) 0.45 1.08(0.89-1.31) 0.98 1.00(0.82-1.22) 0.72 1.04(0.84-1.29) 0.85 0.98(0.80-1.20)
 P (n=445) vs C (n=938) 2.07×10-40 3.47(2.87-4.19) 2.54×10-16 2.12(1.77-2.54) 0.29 0.90(0.75-1.09) 0.38 0.92(0.77-1.10)
 N (n=503) vs C (n=938) 2.50×10-37 3.22(2.68-3.87) 3.37×10-17 2.11(1.77-2.52) 0.13 0.87(0.72-1.04) 0.49 0.94(0.79-1.12)

Low C3 or C4 P (n=591) vs N (n=357) 0.79 0.97(0.80-1.19) 0.31 1.11(0.65-1.02) 0.07 0.81(0.65-1.02) 0.11 0.84(0.68-1.04)
   levels P (n=591) vs C (n=938) 8.62×10-43 3.30(2.77-3.94) 5.67×10-17 2.19(1.86-2.59) 0.02 0.82(0.69-0.97) 0.11 0.88(0.74-1.03)
 N (n=357) vs C (n=938) 9.70×10-39 3.29(2.73-3.95) 4.91×10-19 2.19(1.84-2.61) 0.11 0.86(0.72-1.03) 0.21 0.90(0.75-1.07)

Nephritis P (n=517) vs N (n=431) 0.039 0.82(0.68-0.99) 0.41 0.92(0.76-1.12) 0.11 0.84(0.68-1.04) 0.28 0.90(0.74-1.09)
 P (n=517) vs C (n=938) 2.84×10-36 3.09(2.58-3.70) 2.13×10-17 2.08(1.75-2.47) 0.03 0.82(0.69-0.98) 0.17 (0.76-1.05)
 N (n=431) vs C (n=938) 5.63×10-47 3.77(3.12-4.54) 2.10×10-19 2.25(1.88-2.69) 0.79 0.98(0.81-1.17) 0.96 0.99(0.84-1.19)

Neuropsychiatric P (n=138) vs N (n=810) 0.96 1.01(0.77-1.31) 0.54 1.09(0.83-1.42) 0.46 0.89(0.66-1.21) 0.66 0.94(0.71-1.25) 
   disorder P (n=138) vs C (n=938) 8.07×10-20 3.4(2.59-4.49) 4.43×10-10 2.32(1.77-3.03) 0.16 0.81(0.60-1.09) 0.41 0.89(0.67-1.18)
 N (n=810) vs C (n=938) 1.14×10-51 3.38(2.88-3.98) 7.27×10-23 2.13(1.83-2.48) 0.20 0.91(0.78-1.05) 0.46 0.95(0.82-1.09)

Arthritis P (n=381) vs N (n=567) 0.74 0.97(0.80-1.17) 0.13 0.86(0.71-1.05) 0.92 1.01(0.82-1.25) 0.60 1.06(0.86-1.29)
 P (n=381) vs C (n=938) 4.09×10-35 3.33(2.73-4.05) 1.86×10-12 1.97(1.63-2.38) 0.31 0.90(0.74-1.10) 0.79 0.98(0.81-1.17)
 N (n=567) vs C (n=938) 7.35×10-46 3.43(2.88-4.09) 3.86×10-23 2.28(1.94-2.69) 0.19 0.89(0.75-1.06) 0.33 0.92(0.79-1.09)

Haematologic  P (n=305) vs N (n=643) 0.17 1.15(0.94-1.40) 0.50 1.07(0.88-1.31) 0.61 1.94(0.75-1.18) 0.24 0.88(0.71-1.09)
   disorder P (n=305) vs C (n=938) 6.69×10-38 3.72(3.03-4.59) 7.76×10-16 2.26(1.85-2.77) 0.15 0.85(0.69-1.06) 0.14 0.86(0.70-1.05)
 N (n=643) vs C (n=938) 9.86×10-44 3.24(2.73-3.84) 3.43×10-20 2.11(1.80-2.48) 0.23 0.91(0.77-1.07) 0.73 0.97(0.83-1.14)

Rash P (n=347) vs N (n=601) 0.45 1.08(0.89-1.31) 0.81 0.98(0.80-1.19) 0.64 0.95(0.76-1.18) 0.46 0.92(0.75-1.14)
 P (n=347) vs C (n=938) 2.03×10-37 3.55(2.90-4.34) 2.22×10-14 2.11(1.74-2.57) 0.16 0.86(0.70-1.06) 0.27 0.90(0.74-1.09)
 N (n=601) vs C (n=938) 2.56×10-43 3.29(2.77-3.92) 1.06×10-20 2.17(1.84-2.55) 0.27 0.91(0.77-1.08) 0.70 0.97(0.83-1.14)

SLE/SS P (n=84) vs N (n=864) 0.43 1.14(0.82-1.58) 0.98 0.99(0.71-1.40) 0.60 1.11(0.77-1.60) 0.94 1.01(0.71-1.44)
 P (n=84) vs C (n=938) 4.60×10-16 3.76(2.68-5.27) 1.30×10-5 2.10(1.50-2.96) 0.87 0.97(0.68-1.39) 0.75 0.95(0.67-1.34)
 N (n=864) vs C (n=938) 2.82×10-49 3.3(2.8-3.88) 2.33×10-22 2.11(1.82-2.46) 0.09 0.88(0.75-1.02) 0.34 0.93(0.81-1.08)

P: patients positive for a certain phenotype; N: patients negative for a certain phenotype; C: controls. *Data were available for 923 patients; Bonferroni corrections data not shown.
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cells to produce IFN-γ (40). Multiple 
SNPs from various genes (rs485497 and 
rs583911) have been reported to relate 
to various diseases, such as pSS, PBC, 
Graves’ disease and tumour (41-43). 
Our results indicate that there are no 
associations of rs485497 and rs583911 
with SLE, but we rather revealed the 
association of these rs485497 with ne-
phritis and low C3 or C4 levels of SLE 
in Chinese Han. These findings suggest 
that the rs485497 and rs583911 vari-
ants may be a contributing future that 
underlie a wide spectrum of autoim-
mune diseases, but not to SLE in par-
ticular. Furthermore, fundamental dif-
ferences may exist in the IL12A related 
genetic pathogeneses of SLE and other 
autoimmune diseases. Nevertheless, it 
is likely that difference in genetic back-
ground between SLE and other autoim-
mune diseases, as well as the potential 
genetic heterogeneity among different 
populations, may account for these 
variations.
In summary, our data indicated that the 
GTF2I region (rs117026326), the GT-
F2IRD1 region (rs4717901), but not 
the IL12A region (rs485497, rs583911), 
were associated with the development 
of SLE in Chinese Han. A larger sam-
ple size and more SNPs might be re-
quired for further analysis of GTF2I, 
GTF2IRD1 and IL12A gene with SLE 
susceptibility in different ethnicities.
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