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Abstract
Objective

This study aims to identify candidate genes and critical pathways involved in osteoarthritis (OA). 

Methods
Gene expression data of synovial membrane from OA patients and normal controls (NCs) were downloaded from database. 

Totally, 15 OA and 14 NC chips were available. Differentially expressed genes (DEGs) were identified through limma 
package (log2 fold change >0.585, false discovery rate (FDR) < 0.05), and protein-protein interaction (PPI) network 
was constructed using STRING. Moreover, perturbation and pathway enrichment analyses were performed through 

PerturbationAnalyzer in Cytoscape (iterative criteria <1×e-10) and clusterProfiler package (FDR <0.05), respectively. 

Results
Totally, 236 up-regulated and 290 down-regulated DEGs were identified. In PPI network, 10 hub genes were found, 

including VEGFA, IL6, JUN, IL1B, ICAM1, ATF3, IL8, EGR1, CDKN1A, and JUNB. After perturbation analysis, 32 DEGs 
were passively and significantly changed, like PISD, RARRES3, EIF4G1, and EPHA3. Furthermore, 526 DEGs were 

enriched in 176 pathways, and pathway cross-talk network was constructed, involving 12 pathways and 66 cross-talks. 

Conclusion
Pathways like rheumatoid arthritis, osteoclast differentiation, and cytokine-cytokine receptor interaction might play 
critical roles in OA, and previously unreported genes VEGFA, JUN, JUNB, PISD, RARRES3, EIF4G1, and EPHA3 

might participate in OA, providing novel directions for drug targeting.
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Introduction
Osteoarthritis (OA) is a common form 
of chronically degenerative joint dis-
ease that causes loss of gross cartilage, 
inflammation of synovial membrane, 
remodeling of sub-articular bone, and 
formation of osteophytes (1). It affects 
about 27 million people in the United 
States and nearly 8 million people in the 
United Kingdom (2). OA may happen 
in fingers, feet, spine, hips, and knees, 
and the joint and periarticular abnor-
malities in OA can be evaluated by us-
ing ultrasound imaging (3). OA patients 
suffer from joint pain, stiffness, and 
effusion, which finally lead to muscle 
spasms, tendon contractions, and liga-
ments laxity. Typically, high humidity, 
cold temperature, and drop in baromet-
ric pressure cause increased pain. 
Triggering factors of OA are obesity (4), 
mechanical injury, sex hormone levels 
(5), impairment of peripheral nerves (6), 
and genetic factors (7). It’s reported that 
the C allele of rs3815148 on chromo-
some 7q22 was significantly associated 
with increased prevalence of knee and 
hand OA (8). In OA, the cells in syno-
vial membrane are activated, producing 
chemokines, inflammatory cytokines, 
and other inflammatory mediators (9). 
Pro-inflammatory cytokines, including 
interleukin 6 (IL6), IL8, IL15, IL17, 
IL18, IL21, leukaemia inhibitory factor, 
IL1β, and tumour necrosis factor (TNF) 
have been shown to be implicated in 
OA pathophysiology (10). Among these 
genes, IL1β and TNF control the de-
generation of articular cartilage matrix. 
Especially, IL8 is a pro-inflammatory 
mediator that presents in the synovial 
fluid of OA patients, and it correlates 
with inflammatory markers like IL6 and 
TNF-α (11). In addition, the aberrant ex-
pression of aggrecanases, collagenases, 
cyclooxygenase 2 (COX2), nitric oxide 
synthase 2 (NOS2), cysteine cathepsins 
B and S, serine proteinases, discoidin 
domain receptor 2 (DDR2), matrix met-
alloproteinase 1 (MMP1), MMP3, and 
MMP13 is involved in OA progression 
(12). DDR2 and MMP13 are associated 
with cleavage and degradation of type 
II collagen, while serine proteinases like 
HTRA1 are responsible for exposing 
DDR2 to the activation by type II col-
lagen through degrading the pericellu-

lar matrix components (13). Moreover, 
chondrocytes in OA cartilage express 
IL1, caspase 1, and type 1 IL1 receptor 
(IL1RI). IL1 induces the expression of 
MMPs and participates in matrix de-
pletion in OA cartilage, together with 
TNF-α, MMP1, MMP3, MMP8, and 
MMP13 (12). Additionally, platelet-
derived growth factor (PDGF), bone 
morphogenetic proteins (BMP), and 
nerve growth factor (NGF) are involved 
in the process of pain (14). However, 
the etiology and pathogenesis underly-
ing OA have not been elucidated clearly. 
Further work on identifying candidate 
genes and critical pathways involved in 
the initiation and progression of human 
OA might inform us with novel direc-
tions for targeted therapies.
In the present study, microarray meta-
analysis was utilised to merge gene ex-
pression profiling data from two data-
sets. Differentially expressed genes 
(DEGs) between synovial membranes 
of OA patients and normal controls 
(NCs) were screened out, enrichment 
analysis was performed, protein-pro-
tein interaction (PPI) network was 
constructed, and network perturbation 
analysis and pathway cross-talk analy-
sis were conducted.

Materials and methods
Microarray data
The raw gene expression data were 
acquired from GEO (Gene Expres-
sion Omnibus) repository (available at 
http://www.ncbi.nlm.nih.gov/projects/
geo/) (15). In this study, only chips of 
OA patients and NCs in two datasets, 
GSE1919 (16) and GSE12021 (17), 
were used for bioinformatics analy-
sis. What’s more, the expression data 
in GSE12021 were detected through 
platform GPL96 and platform GPL97. 
However, platform GPL97 involves lit-
tle gene symbols overlapped with other 
platforms, bringing difficulties to mi-
croarray meta-analysis. Therefore, only 
the chips detected through platform 
GPL96 were utilised in the present 
study. Totally, 29 chips were available, 
including 15 chips of OA patients and 
14 chips of NCs (Table I).

Data preprocessing
Firstly, probe symbols were converted 
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to gene symbols, according to the an-
notation information in corresponding 
platforms. For gene symbols which 
were corresponding to multiple probes, 
expression values at probe-level were 
averaged to get gene expression val-
ues. Secondly, gene expression values 
were log2 transformed. Thirdly, missing 
values were estimated by using nearest 
neighbour averaging method in impute 
package (v. 1.40.0, available at http://
www.bioconductor.org/packages/3.0/
bioc/html/impute.html) (18). Fourthly, 
quantile method in preprocessCore 
package (v. 1.28.0, available at http://
www.bioconductor.org/packages/3.0/
bioc/html/preprocessCore.html) (19) 
was utilised to perform normalisation 
between chips. Finally, expression data 
in two datasets were merged by using 
CONOR package from the Bioconduc-
tor project (20).

DEGs screening and 
hierarchical clustering analysis
Genes differentially expressed between 
OA and NC samples were identified by 
utilising limma package in R language 
(v. 3.22.7, available at http://www.bio-
conductor.org/packages/3.0/bioc/html/
limma.html) (21), and p-value was 
adjusted through Benjamini-Hochberg 
(BH) method (22), producing false 
discovery rate (FDR). The criteria for 
this analysis were |log2 fold change 
(FC|) >0.585 and FDR <0.05. Then, 
pheatmap package in R language was 
utilised to perform bidirectional hierar-
chical clustering analysis (BHCA) (23, 
24). Based on Euclidean distances of 
expression values, DEGs with similar 
expression pattern were clustered. 

The construction of PPI network
The PPIs among DEGs were investi-
gated through online sever STRING 
(Search Tool for the Retrieval of In-
teracting Genes, available at http://
string-db.org/) (25), and PPIs with 

combined score > 0.4 were up-loaded 
to Cytoscape (v. 2.8, available at http://
cytoscape.org/) (26) to construct PPI 
network. 

Perturbation analysis of PPI network
Analysis of the dynamic changes in 
PPI network caused by single- or mul-
ti-perturbation might provide direc-
tions for the discovery of key genes in 
a network. The perturbation analysis 
of PPI network was conducted by us-
ing PerturbationAnalyzer plugin (27)
in Cytoscape software. The pattern for 
this analysis was multi-perturbation, 
the dissociation constant was set as 10, 
and the iterative criteria was <1×e-10.

Enrichment and pathway 
cross-talk analyses
To investigate the bio-functions that 
involve the identified DEGs, GO (gene 
ontology) functional enrichment analy-
sis and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathway enrich-
ment analysis were performed by using 
clusterProfiler package (v. 2.0.1, avail-
able at http://www.bioconductor.org/
packages/3.0/bioc/html/clusterProfiler.
html) in R language (28). The crite-
rion for this analysis was FDR <0.05. 
Pathway cross-talks among enriched 
pathways were analysed by perform-
ing latent pathway identification analy-
sis (LPIA) (29). Firstly, the enriched 
GO biological process (BP) terms and 
KEGG pathways were abstracted. Sec-
ondly, the bipartite network of GO BP 
terms and KEGG pathways was con-
structed through Cytoscape software, 
and edge in this network represented 
that genes involved in a certain path-
way were also involved in the connect-
ed GO BP term. Edge weight of bipar-
tite network was calculated by using 
the following formula:

In this formula, P stands for KEGG 
pathway, G represents GO BP term,  

          is the Jaccard similarity coeffi-
cient between P and G, DE denotes the 
expression value of DEG,           signi-
fies the DEGs involved in P or G, and        
           shows the DEGs involved in both 
P and G. Thirdly, pathway cross-talk 
network was constructed by linking 
the pathways with at least one jointly 
connected GO BP term. In pathway 
cross-talk network, edge weight was 
calculated by utilising the following 
formula: 

                            Fourthly, the im-
portance of each cross-talk between 
pathways was calculated by utilising 
random method:

In this formula, Tij repre-
sents the possibility of link-

ing pathway Pi to pathway Pj directly, 
and Np is the count of pathways in this 
network. Furthermore, the p-value of 
pathway cross-talk was calculated by 
using bootstrap method (repeated sam-
pling, from the first step to the fourth 
step) (30). The criterion for this analy-
sis was p-value <0.05.

Results
DEGs screening and hierarchical 
clustering analysis
After data preprocessing and merging, 
the expression values of 8558 genes in 
29 chips from 2 datasets were obtained. 
The expression pattern of 29 chips is 
shown in Figure 1a. The median val-
ues of these chips were aligned, indi-
cating that the expression values from 
different datasets were well normalised 
and could be utilised for further analy-
sis. After DEGs screening, a total of 
526 DEGs (|log2 FC| >0.585 and FDR 
<0.05) were identified between OA and 
NC samples, including 236 up-regulat-
ed and 290 down-regulated DEGs (Fig. 
1b). After BHCA, DEGs with similar 
expression pattern were clustered, dis-
tinguishing OA from NC samples clear-
ly (Fig. 1c).

The construction of PPI network
According to the PPIs among DEGs, 

Table I. The distribution of 29 chips.

Dataset Platform NC OA

GSE1919 GPL91 [HG_U95A] Affymetrix Human Genome U95A Array 5 5
GSE12021 GPL96 [HG-U133A/B] Affymetrix Human Genome U133A/B Array 9 10

NC: normal control; OA: osteoarthritis.



285

Candidate genes in osteoarthritis / X. Zhang et al.

PPI network was constructed (Fig. 2), 
involving 365 nodes (DEGs) and 1227 
edges (PPIs, combined score >0.4). 
Among the DEGs in PPI network, 210 
DEGs were down-regulated and 155 
DEGs were up-regulated. The top 10 
DEGs with most degree, which are de-
fined as hub genes in PPI network, are 
listed in Table II. 

Perturbation analysis of PPI network
The hub genes in PPI network were uti-
lised to perform perturbation analysis 
(multi-perturbation, dissociation con-
stant = 10, and iterative criteria <1×e-10), 
obtaining the perturbation sub-network 
(Fig. 3). The expression values of 32 
DEGs were passively and significantly 
affected by perturbation (12 DEGs were 

down-regulated and 20 DEGs were up-
regulated), while the expression values 
of 10 hub genes were elevated after per-
turbation. Among the passively changed 
DEGs, PISD, RARRES3, EIF4G1, and 
EPHA3 significantly changed their ex-
pression values (change ratio >2). How-
ever, these 4 DEGs have no direct PPI 
relationship with the 10 hub genes.

Fig. 1. The results of DEGs screening and hierarchical clustering analysis.
A. Gene expression data after merging and normalisation. B. The volcano plot of gene expression. C. Bidirectional hierarchical clustering analysis. DEGs: 
differentially expressed genes; NC: normal control; OA: osteoarthritis; FDR: false discovery rate; FC: fold change; the green to red bar in Figure 1C stands 
for the change from low expression to high expression.
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Enrichment and pathway 
cross-talk analyses
After enrichment analysis, up-regu-
lated DEGs were significantly (FDR 
<0.05) enriched in functions about 
leukocyte migration, extracellular ma-

trix, binding, and lipase, and pathways 
about rheumatoid arthritis, lysosome, 
phagosome, and cytokine-cytokine 
receptor interaction (Fig. 4). While, 
down-regulated DEGs were signifi-
cantly (FDR <0.05) enriched in func-

tions about developmental process, 
nucleus, and nucleic acid binding, and 
pathways about MAPK signaling, oste-
oclast differentiation, cancer, and ma-
laria (Fig. 4). Totally, 526 DEGs were 
enriched in 176 pathways and 4973 GO 
BP terms, and the bipartite network of 
GO BP terms and KEGG pathways 
was constructed, involving 83012 
edges. After linking the pathways with 
at least one jointly connected GO BP 
term, pathway cross-talk network was 
constructed, involving 12 pathways 
(p-value <0.05, Table III) and 66 cross-
talks (Fig. 5). Among these pathways, 
rheumatoid arthritis, osteoclast differ-
entiation, and cytokine-cytokine recep-
tor interaction were enriched by plenty 
of DEGs, and had strong cross-talks 
with other pathways. 

Fig. 2. PPI network of DEGs.
Red nodes: up-regulated 
DEGs; green nodes: down-
regulated DEGs; the depth 
of node colour was positively 
related with |log2FC|; the size 
of node was positively related 
with degree; PPI: protein-pro-
tein interaction; DEGs: differ-
entially expressed genes; FC: 
fold change. 

Table II. The top 10 DEGs with most degree (hub genes).

Gene Degree Log2FC FDR State

VEGFA 62 -1.93761416 0.000183029 Down-regulated
IL6 60 -2.282816391 0.013912616 Down-regulated
JUN 54 -1.535360267 0.000923929 Down-regulated
IL1B 38 -1.423515398 0.007149227 Down-regulated
ICAM1 37 -0.6456171 0.049335085 Down-regulated
ATF3 37 -1.935650407 0.000550951 Down-regulated
IL8 33 -2.080069775 0.046203768 Down-regulated
EGR1 31 -1.027871683 0.033167196 Down-regulated
CDKN1A 30 -1.436349242 0.000713816 Down-regulated
JUNB 29 -1.085945071 0.013431938 Down-regulated

DEGs: differentially expressed genes; FC: fold change; FDR: false discovery rate.
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Discussion
OA is a prevalent chronic joint dis-
ease. Patients with OA suffer from 
joint pain, stiffness, and effusion. In 
this study, microarray meta-analysis 
was performed to identify candidate 
genes and critical pathways involved 
in OA progression. Consequently, 526 
DEGs were identified between OA and 

NC samples. Then PPI network was 
constructed, and 10 hub genes were 
identified, including VEGFA, IL6, 
JUN, IL1B, ICAM1, ATF3, IL8, EGR1, 
CDKN1A, and JUNB. Furthermore, 
perturbation analysis of PPI network 
was performed, and PISD, RARRES3, 
EIF4G1, and EPHA3 were significant-
ly changed by the perturbation of hub 

genes. Moreover, enrichment and path-
way cross-talk analyses were conduct-
ed, and rheumatoid arthritis, osteoclast 
differentiation, and cytokine-cytokine 
receptor interaction had strong cross-
talks with other pathways.
Among the 10 hub genes, IL1B (31), 
IL6, IL8 related with pro-inflammation 
(10, 11), ICAM1 that regulates intercel-

Fig. 3. The perturbation sub-
network of PPI network.
Red nodes: up-regulated 
DEGs after perturbation; green 
nodes: down-regulated DEGs 
after perturbation; the depth 
of node colour was positively 
related with the ratio of expres-
sion value after perturbation to 
expression value before pertur-
bation; PPI: protein-protein in-
teraction; DEGs: differentially 
expressed genes. 

Table III. The 12 pathways with cross-talk.

Pathway ID Pathway name p-value DEGs

hsa05323 Rheumatoid arthritis 0 ICAM1, PGF, ATP6V1B1, IL1B, JUN, IL8, IL6, CCL20, MMP3, TNFSF11, 
   TNFRSF11A, HLA-DMB, IL23A, ATP6V0E2, CTSK, ANGPT1, ITGB2
hsa05219 Bladder cancer 0.012 DAPK3, E2F3, PGF, FIGF, CDKN1A, MYC, IL8, VEGFC, CDKN2A
hsa05160 Hepatitis C 0.036 MAPK11, NFKBIA, SOCS3, LDLR, CDKN1A, IL8, TLR3
hsa05144 Malaria 0 ICAM1, DARC, SDC4, HBD, IL1B, IL8, IL6, COMP, THBS4, ITGB2
hsa04976 Bile secretion 0.047 LDLR, SLCO1B1, ADCY1, NR0B2, ADCY7
hsa04940 Type I diabetes mellitus 0.048 IL1B, HLA-DMB
hsa04380 Osteoclast differentiation 0 JUND, MAPK11, NFKBIA, IL1R1, MAP2K7, FOSL2, SOCS1, NFKB2, JUNB, SOCS3,  
   IL1B, JUN, FOSB, TNFSF11, TNFRSF11A, BLNK, TNFRSF11B, CTSK
hsa04110 Cell cycle 0.03 E2F3, CDKN1A, MYC, GADD45B, CDC20, CDKN2A
hsa04060 Cytokine-cytokine receptor interaction 0.011 BMPR2, PDGFA, IL1R1, FIGF, IL1B, INHBB, IL8, CXCL2, IL6, CXCL3, CCL20,  
   CX3CR1, TNFSF11, CD27, CCL19, CXCL10, VEGFC, TNFRSF11A, IL23A, 
   TNFRSF11B, IL11RA, IL10RA
hsa03440 Homologous recombination 0.015 XRCC2, TOP3B, RPA3
hsa00600 Sphingolipid metabolism 0.033 UGCG, SMPD2, GLB1, GALC
hsa00330 Arginine and proline metabolism 0.044 GAMT, ABP1, GATM, P4HA2

ID: identifier; DEGs: differentially expressed genes.
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lular adhesion (32), ATF3 associated 
with neuropathic pain (33), EGR1 that 
regulates cell proliferation, differentia-
tion, and apoptosis (34), and CDKN1A 
that regulates cell cycle (35) have been 
reported to participate in the develop-
ment of OA. While, there is little direct 
evidence that VEGFA, JUN, or JUNB 
was associated with OA. VEGFA codes 

vascular endothelial growth factor A. 
The mRNA expression of three VEGF 
isoforms (VEGF121, VEGF165, and 
VEGF189) and their receptors are ele-
vated in OA than NC cartilage samples, 
and VEGF participates the destruction 
of OA articular cartilage through en-
hancing the expression of MMPs (36). 
As an isoform of VEGF, VEGFA might 

have similar bio-function. In addition, 
it’s reported that VEGFA is the target 
gene of several microRNAs overex-
pressed under the OA condition (14). 
In this study, the expression value of 
VEGFA was significantly dysregulated, 
indicating that VEGFA might play a 
role in OA through regulating vascu-
larisation of articular tissue. JUN and 
JUNB are proto-oncogenes and tran-
scription factors. In this study, they 
were enriched in osteoclast differentia-
tion, while JUN was enriched in rheu-
matoid arthritis as well. Reportedly, 
osteoclast differentiation, enhanced 
osteoclast activity, and cartilage degen-
eration are associated with subchondral 
osteosclerosis, which is a pathological 
hallmark of OA (37). In this study, JUN 
and JUNB were significantly dysregu-
lated. Therefore, JUN and JUNB might 
be involved in the development of OA 
by regulating osteoclast differentiation. 
Among the passively changed DEGs in 
perturbation sub-network, PISD codes 
phosphatidylserine decarboxylase and 
participates in primary metabolic pro-
cess, like glycine, serine and threonine 
metabolism and glycerophospholipid 
metabolism. RARRES3, also called 
tazarotene-induced gene 3 (TIG3) or 
retinoid-inducible gene 1 (RIG1), codes 
retinoic acid receptor responder protein 
3. As a member of HREV107 type II 
tumour suppressor family, RARRES3 
induces cellular apoptosis at the Golgi 
apparatus in HtTA cervical cancer cells 
(38), and it shows decreased expres-
sion in damaged cartilage of OA pa-
tients (39). EIF4G1 codes eukaryotic 
translation initiation factor 4 γ1, which 
regulates translation through interact-
ing with poly(A)-binding protein (40). 
EPHA3 codes ephrin receptor A3. It’s 
reported that the in vitro activation of 
EPHB4 affects human OA articular cell 
metabolism, and in vivo overexpres-
sion of EPHB4 has a protective effect 
on OA joint structural changes through 
reducing aggrecan, type II collagen 
degradation, type X collagen, and col-
lagen fibril disorganisation (41). As a 
isoform of EPHB4, EPHA3 might have 
similar bio-function. In conclusion, 
although there are little previous evi-
dence that PISD, RARRES3, EIF4G1, 
and EPHA3 participate in OA progres-

Fig. 4.  The result of enrichment analysis. DEGs: differentially expressed genes.
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sion, the expression values of these 
genes were differentially expressed be-
tween OA and NC samples and signifi-
cantly affected by the perturbation of 
hub genes, indicating that these genes 
might play a role in the development 
of OA.
In this study, microarray meta-analysis 
was performed to identify that path-
ways, including rheumatoid arthritis, 
osteoclast differentiation, and cytokine-
cytokine receptor interaction, might 
play critical roles in the development of 
OA, and previously unreported genes, 
including VEGFA, JUN, JUNB, PISD, 
RARRES3, EIF4G1, and EPHA3 might 
participate in OA progression, provid-
ing novel directions for drug targeting. 
Our further researches will focus on 
verifying these predictions with a plen-
ty of clinical samples.
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