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ABSTRACT
Transforming growth factor-betas 
(TGF-βs) are multifunctional cytokines 
that have been implicated in the regu-
lation of a broad range of biological 
processes, including cell proliferation, 
cell survival, and cell differentiation. 
The three isoforms identified in mam-
mals, TGF-β1, TGF-β2, and TGF-β3, 
have high sequence homology, bind to 
the same receptors, and show similar 
biological functions in many in vitro 
studies. However, analysis of the in vivo 
functions of the three isoforms and mice 
deficient for each cytokine reveals strik-
ing differences, illustrating their unique 
biological importance and functional 
non-redundancy. Although increasing 
evidence suggests that TGF-β1 and, to 
a lesser extent, TGF-β2 play an integral 
role in maintaining immune tolerance, 
the immunological role of TGF-β3 has 
not been carefully evaluated. Recent 
studies have focused on the multifunc-
tional role of TGF-β3. In this review, 
we provide an overview of the role of 
TGF-β3 in immunity, with comparison 
to TGF-β1 and -β2.

Introduction
Three structurally similar isoforms of 
TGF-β (TGF-β1, TGF-β2, and TGF-β3) 
have been identified in humans (1). 
TGF-β1 was first cloned from a human 
cDNA library (2) and human TGF-β2 
and TGF-β3 cDNA were subsequently 
cloned (3, 4). TGF-β1 is highly homol-
ogous to the TGF-β2 and -β3 isoforms 
(5). TGF-β2 and -β3 share 71% (β2 vs. 
β1) and 76% (β3 vs. β1) sequence iden-
tity to TGF-β1 (6). Although TGF-β4 
and -β5 were identified from cDNA li-
braries of chicken chondrocyte and frog 
oocyte, respectively (6, 7), mammalian 
TGF-β4 and -β5 have not yet been de-
scribed. In vitro experiments indicated 
that TGF-β1, -β2, and -β3 often exhibit 
similar biological activities (8-11). 
Despite this high sequence homology, 
analysis of the in vivo functions of the 
three isoforms reveals marked differ-

ences, indicating their non-redundancy 
(12-16). The TGF-βs have opposite ef-
fects on tissue fibrosis. Wound-healing 
experiments revealed that TGF-β1 
and TGF-β2 cause fibrotic scarring 
responses and that TGF-β3 induces a 
scar-free response (17). Both TGF-β1 
and -β2 activate the collagen α2 (I) 
gene promoter, resulting in increased 
collagen synthesis (18). It was also re-
ported that TGF-β1, but not TGF-β3, is 
a crucial factor in the development of 
pulmonary fibrosis (19). Most of the in-
formation on the immunological activ-
ity of TGF-βs derives from studies of 
TGF-β1 and, in part, TGF-β2, whereas 
recent investigations have begun to il-
luminate the importance of TGF-β3 in 
the immune system. In this review, we 
focus on recent novel insights into the 
immunological role of TGF-β3, with 
comparison to TGF-β1 and -β2.

TGF-β family synthesis
The three isoforms of TGF-β each uti-
lise a unique activation mechanism 
from their latent forms (20). TGF-βs are 
initially synthesised as larger precursor 
polypeptides containing a hydropho-
bic signal sequence, latency-associated 
peptide (LAP), and mature peptide (pre-
pro-TGF-β). Pre-pro-TGF-β monomers 
dimerise through disulfide bridges be-
tween cysteine residues in LAP and 
cysteine residues in the mature peptide 
(pro-TGF-β), and are cleaved by furin 
convertase but remain non-covalently 
associated with the mature peptide. 
LAP confers latency to the mature pep-
tide by shielding the receptor-binding 
region of active TGF-β (21). Similar 
latent complexes have not yet been re-
ported for other members of the TGF-β 
superfamily.
The activity of secreted TGF-β is pri-
marily regulated by the conversion 
of its latent form to its active form. 
Although tissues contain significant 
quantities of latent TGF-β, the activa-
tion of only a small fraction of this la-
tent TGF-β exerts maximal effects on 
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target cells. In lymphoid tissues, LAP 
is thought to be removed by throm-
bospondin, plasmin, and acidification 
during the inflammatory process (22). 
The TGF-β-LAP complex, called the 
small latent complex (SLC), is further 
bound to latent TGF-β-binding protein 
(LTBP). There are four isoforms of 
LTBP in humans (LTBP-1, -2, -3, and 
-4). LTBP-2 is unique in the LTBP fam-
ily as it is the only isoform that does 
not bind to latent TGFβ (23). TGF-β-
LAP-LTBP is termed the large latent 
complex (LLC). The LTBP is not nec-
essary for latency (24), but it does play 
a critical role in the assembly and secre-
tion of TGF-β (25), as well as target-
ing the LLC for storage through inter-
actions with fibronectin and fibrillin in 
the extracellular matrix (ECM) through 
non-covalent interactions (26). LTBPs 
covalently bind to the LAP portion of 
SLC through the third eight-cysteine 
type domain of LTBP. The third eight-
cysteine type domain of LTBP-1 and 
LTBP-3 can associate efficiently with 
pro-TGF-β1, -β2, and -β3. Conversely, 
LTBP-4 binds to TGF-β1-LAP more 
weakly than the other two LTBPs, indi-
cating that LTBP-1 and LTBP-3 might 
be the primary proteins responsible for 
binding to SLC (27). The C-termini of 
LTBP-1, -2, and -4 bind to a similar 
region in the N-terminus of fibrillin-1 
and -2 through non-covalent interac-
tions, whereas LTBP-3 reportedly does 
not (28). However, LTBP-3 co-localises 
with fibrillin fibres in tissues, and loss 
of fibrillin-1 prevents the incorporation 
of LTBP-3 into a matrix, indicating that 
LTBP-3 association with the matrix de-
pends on fibrillin-1 microfibrils (29). 
As for secretion of LTBPs from cells, 
LTBP-1 and LTBP-4 do not require 
binding to SLC, whereas LTBP-3 is se-
creted only as LLC (30, 31).
TGF-β1-LAP and TGF-β3-LAP, but 
not TGF-β2-LAP, contain an Arg-Gly-
Asp (RGD) integrin-binding motif, and 
several RGD-binding integrins, such as 
αvβ6 and αvβ8, are able to activate latent 
TGF-β. Thus, the expression of αvβ6 
and αvβ8 integrins is thought to be cru-
cial for the activation of TGF-β1 and 
-β3. The expression of αvβ6 integrin is 
restricted to a subset of epithelial cells 
and is not expressed on immune cells, 

whereas αvβ8 integrin is expressed on 
most leukocytes. Leucocyte-specific 
conditional deletion of Itgb8 (which 
encodes integrin β8) causes severe 
inflammatory bowel disease and the 
development of high levels of auto-
antibodies against double-stranded 
DNA (32). These findings indicate the 
importance of αvβ8 integrin-mediated 
TGF-β activation by lymphoid cells 
for preventing the immune dysfunction 
that results in inflammatory bowel dis-
ease and autoimmunity. The expression 
of αvβ8 integrin on dendritic cells and 
activated CD4+CD25+Foxp3+ regulato-
ry T cells (Tregs) (32, 33) might play a 
key role in promoting immune regula-
tion by activating TGF-β1. Consistent 
with these reports, Itgb8-deficient mice 
show perinatal lethality with profound 
defects in vascular development, par-
ticularly in the brain (34), and a simi-
lar phenotype is also seen in mice with 
mutation in Tgfb1 or deletion in the 
Tgfb3 gene (35).

TGF-β family receptors and signal 
transduction
TGF-βs are secreted as latent proteins. 
After activation, TGF-βs interact with 
the same receptor heterodimers, TGF-β 
receptor I (TGFBR1/ALK-5) and 
TGF-β receptor II (TGFBR2), to acti-
vate the canonical Smad2/3 signalling 
pathway. However, TGF-β2 requires 
binding of TGF-β receptor III (TGF-
BR3) prior to biding TGFBR2 (36). 
TGF-β3 transmits signals biologically 
similar to and more potently than those 
transmitted by TGF-β1 and -β2, de-
pending on the cell type and assay used 
(10, 37-39). Phosphorylated Smad2 and 
Smad3 form heteromeric complexes 
with Smad4 and translocate to the nu-
cleus where they activate target gene 
transcription. The function of TGF-β3 
in palate fusion is mediated by Smad2, 
since the overexpression of a Smad2 
transgene in TGF-β3 mutant palate epi-
thelial cells rescues the cleft palate phe-
notype in TGF-β3-deficient mice (40). 
Intriguingly, TGF-β3 can also activate 
ALK-1, but only in the presence of 
ALK5 (41). ALK-1 was first identified 
as a receptor for BMP-9 and BMP-10, 
and was shown to mediate downstream 
signals associated with Smad1/5/8 in 

endothelial cells (42). TGF-β3 induces 
the activation of TGF-β receptor II ki-
nase and phosphorylates ALK5, which 
recruits ALK1 into a TGF-β receptor 
complex. ALK5 kinase activity is re-
quired for optimal ALK1 activation. 
Activated ALK1 and ALK5 induce 
the phosphorylation of Smad1/5 and 
Smad2/3, respectively, whereas ALK1 
directly inhibits ALK5/Smad3 signal-
ling (41). Intriguingly, endoglin, a co-
receptor for TGF-β1 and TGF-β3, func-
tions as a modulator of the balance be-
tween TGF-β/ALK1 and TGF-β/ALK5 
signalling. Endoglin, which stimulates 
TGF-β/ALK1 signalling and indirectly 
inhibits TGF-β/ALK5 signalling, regu-
lates endothelial cell proliferation (43). 
These findings suggest that the ratio be-
tween ALK1 and ALK5 signalling may 
provide one explanation for the bifunc-
tionality of the TGF-βs. Smad-inde-
pendent non-canonical pathways medi-
ated by TGF-β have also been reported. 
TGF-β1 induces profibrotic signalling 
by activating tyrosine-protein kinase 
c-Abl, which is a mediator for fibrotic 
responses (44). Several studies have 
suggested other possible non-canonical 
pathways, such as mitogen-activated 
protein kinases (MAPK), phosphati-
dylinositol-4,5-biphosphate 3-kinase 
(PI3K), AKT, and the NF-κB pathway 
(45). More extensive studies of TGF-β 
signal transduction in immune cells are 
needed to elucidate the specific role of 
each TGF-β isoform in the immune 
system.

TGF-β-deficient animals
TGF-β1-deficient mice die by 4 weeks 
of age with massive infiltrations of lym-
phocytes and macrophages resulting in 
multi-organ inflammation, including the 
lungs (vasculitis, perivascular cuffing, 
and interstitial pneumonia) and heart 
(endocarditis and myocarditis) (46, 47). 
The progressive inflammatory process 
is accompanied by several autoim-
mune manifestations, such as produc-
tion of antibodies to nuclear antigens 
(single-stranded DNA, double-stranded 
DNA, Sm, and RNP), immune complex 
deposition, and increased expression of 
both major histocompatibility complex 
(MHC) class I and class II antigens (48, 
49). Mice with TGF-β2 deletion exhibit 
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perinatal mortality and show cardiac, 
lung, craniofacial, limb, spinal column, 
eye, inner ear, and urogenital defects. 
Around 23% of TGF-β2 mutant embry-
os on the 129 background, but not C57, 
displayed cleft palate (50). TGF-β3-
deficient mice survive throughout the 
prenatal period, only to die within 20 
hr of birth due to defective palatogen-
esis and delayed pulmonary develop-
ment (51, 52). Although TGF-β2- and 
TGF-β3-deficient mice both develop 
cleft palates, the structural features of 
cleft palate are quite different between 
the mutants (50). Thus, there is little 
phenotypic overlap between TGF-β1-, 
-β2– and -β3-deficient mice, indicating 
non-compensated functions between 
the three isoforms of TGF-β. However, 
vascular pathology is a common fea-
ture of TGF-β1, -β2 and -β3 deficiency. 
Around 50% of TGF-β1-deficient mice 
show prenatal lethality due to impaired 
development of the yolk sac vascula-
ture (53). TGFB2 and TGFB3 muta-
tions are both associated with aortic 
aneurysms and dissections in humans 
(54, 55). Intriguingly, a knock-in mouse 
in which the coding region of exon1 of 
the Tgfb3 gene replaced the full-length 
Tgfb1 cDNA display a significant, but 
not complete, improvement in the cleft 
palate phenotype when compared to 
TGF-β3-deficient mice, indicating that 
an isoform-specific role for TGF-β3 
in the palatal epithelium during pal-
ate formation can be at least partially 
compensated by TGF-β1 (56). One can 
argue that mice with TGF-β2 and -β3 
deletion do not survive long enough 
to develop autoimmune disease due to 
their perinatal mortality. The neonatal 
mortality in TGF-β2- and -β3-deficient 
mice make it difficult to investigate the 
significance of these two TGF-β iso-
forms in the immune system. Hence, 
more detailed studies with conditional 
TGF-β2 and -β3 deletion in immune 
cells are needed.

Pro-inflammatory role of TGF-β3
It is recognised that TGF-β is a multi-
functional cytokine. Of particular inter-
est, TGF-β1 is known to play a crucial 
role in immune responses. TGF-β1 has 
been shown to induce a distinct lineage 
of pro-inflammatory interleukin (IL)-

17-producing CD4+ T cells, known as 
Th17 cells. The differentiation of Th17 
cells in mice is initiated synergistical-
ly by TGF-β1 and IL-6 (57-59). Th17 
cells induced by TGF-β1 plus IL-6 do 
not readily induce autoimmune disease 
unless they are further exposed to IL-23 
(60). TGF-β1 is able to stimulate im-
munoglobulin A (IgA) production by 
lipopolysaccharide (LPS)-stimulated 
B cell (61). In humans, TGF-β1 and 
IL-21, produced by follicular helper T 
(TFH) cells, synergistically promote 
naïve B cell proliferation and differen-
tiation to IgA-producing plasmablasts 
(62). The combination of IL-21 and 
TGF-β1 up-regulates the expression 
of CCR10, a common mucosal hom-
ing receptor, which mediates migration 
to and retention in the germinal cent-
ers, on B cells. Although a high serum 
concentration of TGF-β1 was found in 
patients with SLE, it did not correlate 
with Systemic lupus erythematosus 
(SLE) disease activity (63), and the role 
of TGF-β1 in lupus pathogenesis has 
yet to be elucidated.
In mammals, TGF-β1 is predominant-
ly expressed by haematopoietic cells, 
such as CD4+CD25+ Tregs, TFH cells, 
dendritic cells, and B cells, whereas 
TGF-β2 and TGF-β3 are present in 
negligible amounts and have been 
thought to play an insignificant role in 
the immune system (64-66). In humans, 
TGF-β1 is the most abundant circulat-
ing isoform in plasma (67). However, 
several recent lines of evidence suggest 
a role for TGF-β3 in the pathogenesis 
of autoimmune diseases. In lymphoid 
tissue, TGF-β3 is expressed in CD4+ 
T cells, CD8+ T cells, γδ T cells and B 
cells, but not in myeloid cells (CD11b+ 
and/or CD11c+ cells). Kuchroo and col-
leagues reported that TGF-β3 is a key 
molecule expressed by pathogenic Th17 
cells (68). Acute ablation of TGF-β3-
expressing cells in MOG-immunised 
mice led to selective loss of IL-17+ cells 
with no obvious change in IFN-γ+ cells. 
TGF-β3-induced Th17 cells highly ex-
press Il22 and Il23r mRNA compared to 
TGF-β1-induced Th17 cells. The adop-
tive transfer of TGF-β3-induced Th17 
cells, but not TGF-β1-induced Th17 
cells, induced severe EAE. Intrigu-
ingly, in contrast to TGF-β1-induced 

Th17 cells, TGF-β3-induced Th17 cells 
induced higher expression of Smad1/5 
and lower expression of Smad2/3. T-bet 
might have a crucial role for the induc-
tion of TGF-β3-induced Th17 cells, 
because Th17 cells from T-bet-deficient 
mice failed to induce severe EAE due 
to lower TGF-β3 expression, and ex-
ogenous administration of TGF-β3 
overcomes the T-bet requirement for 
the induction of pathogenic Th17 cells. 
However, the mechanism for inducing 
TGF-β3 by T-bet remains to be eluci-
dated. Chikuma et al. also reported that 
mice with T cell-specific deficiency in 
TRIM28 show derepression of TGF-β, 
especially the TGF-β3 isoform, which 
contributed to the development and ac-
cumulation of autoreactive Th17 cells 
(69). These findings indicate a pro-
inflammatory role for TGF-β3 in some 
inflammatory conditions.

Anti-inflammatory role of TGF-β3
Deletion of Tgfr2 in various leukocyte 
subsets clarified the immunoregulatory 
roles of the TGF-βs (70), and many 
studies have revealed immunoregulato-
ry roles for TGF-β1. Naïve CD4+ T cells 
can differentiate into Th17 cells when 
TGF-β1 synergises with IL-6, while 
TGF-β1 induces CD4+CD25+Foxp3+ 
Treg, which is an anti-inflammatory 
subset of CD4+ T cells in humans and 
animals (71). It should be noted that 
TGF-β1 negatively regulates the dif-
ferentiation of Th1 and Th2 cells by 
blocking the induction of T-bet and 
GATA3, respectively (72, 73). Sys-
temic administration of TGF-β1 sup-
pressed experimental autoimmune en-
cephalitis (EAE) in mice (74) and the 
acute and chronic phases of streptococ-
cal cell wall (SCW)-induced arthritis 
in rats (75). TGF-β1 potently inhibits 
both proliferation and Ig production by 
Staphylococcus aureus-activated hu-
man B cells (76). TGF-β1 suppresses 
B cells by inhibiting both the synthesis 
of Ig mRNA and the switch from the 
membrane form to the secreted forms 
of μ and γ mRNA (77). Consistent with 
these studies, the addition of TGF-β1 
neutralising antibody partially abro-
gated the CD4+CD25+CD69- Treg-me-
diated suppression of B cell antibody 
production in vitro (78).
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Unlike TGF-β1, the studies referred to 
above did not investigate the suppres-
sive activity of TGF-β3. There are few 
studies examining the distinct expres-
sion of TGF-β3 in immune cells at the 
protein level. However, indirect evi-
dence suggested that TGF-β3 plays an 
important role in immune regulation. 
In the mouse experimental autoim-
mune encephalomyelitis (EAE) model, 
the induction of EAE was associated 
with high expression of Tgfb1 mRNA 
and low expression of Tgfb3 mRNA 
in spinal cord tissue. The treatment of 
EAE with 17β-estradiol elevated the 
expression of TGF-β3, but lowered the 
expression of TGF-β1 (79). TGF-β2 
expression was not altered by EAE in-
duction or treatment. The inverse rela-
tionship between TGF-β1 and TGF-β3 
indicates that the two TGF-β isoforms 
play opposing roles in the control of 
EAE.
We recently reported that CD4+CD25-

LAG3+ Tregs (LAG3+ Treg) regulate 
humoral immunity and lupus disease 
in MRL-Faslpr/lpr mice via TGF-β3 pro-
duction (11). LAG3+ Treg characteristi-
cally express the transcriptional factor 
early growth response gene 2 (Egr2), 
which is required for T cell anergy in-
duction (80), and were first identified 
as Foxp3-negative induced Treg that 
produced high amounts of IL-10 (81). 
Egr2 mediates IL-27-induced IL-10 
production in CD4+ T cells via signal 
transducer and activator of transcrip-
tion 3 (STAT3) (82). Ectopic expression 
of Egr2 on naïve CD4+ T cells induces 
not only LAG3 and B-lymphocyte-in-
duced maturation protein-1 (Blimp-1) 
expression, but also IL-10 production, 
and confers in vivo suppressive activ-
ity (81), indicating that Egr2 plays a 
major role in the suppressive activity 
of LAG3+ Tregs. Subsequently, Gagli-
ani et al. reported that co-expression of 
LAG3 and CD49b is specific for IL-
10-producing type 1 T regulatory (Tr1) 
cells (83). Thus, LAG3 is considered 
to be one of the phenotypic markers of 
IL-10-producing Foxp3-independent 
CD4+ Tregs. We and our collabora-
tors have shown that polymorphisms 
in EGR2 influence SLE susceptibil-
ity in humans (84). SLE is regarded 
as a prototypic autoimmune disease, 

in which autoimmune inflammation is 
responsible for multiple organ dam-
age, and autoantibodies play a pivotal 
role in triggering the inflammation. It 
was also reported that lymphocyte-
specific Egr2 conditional knockout 
mice develop a lupus-like autoimmune 
disease (85). We have recently re-
vealed that Egr2-expressing wild type 
(WT) LAG3+ Tregs repress excessive 
humoral immunity in T cell-specific 
Egr2 conditional knockout mice (11). 
Intriguingly, LAG3+ Tregs, but not 
CD4+CD25+ Tregs, produce enormous 
amounts of TGF-β3 in an Egr2- and 
Fas-dependent manner. TGF-β3 ef-
fectively suppresses both B cell pro-
liferation and antibody production by 
inhibiting several important pathways 
for B cell function, such as STAT6, 
Syk, and NF-κB p65. In lupus-prone 
MRL-Faslpr/lpr mice with a Fas muta-
tion, adoptive transfer of LAG3+ Treg 
from Fas-sufficient MRL-Fas+/+ mice 
effectively suppressed the progres-
sion of lupus in a TGF-β3-dependent 
manner. TGF-β3-mediated B cell sup-
pression requires programmed death-1 
(PD-1) expression on B cells. PD-1 is 
an immunoinhibitory receptor of the 
CD28/B7 family, and polymorphism of 
the PDCD1 gene is associated with a 
higher incidence of SLE (86). Intrigu-
ingly, PD-L1, the ligand for PD-1, is 
highly expressed on the cell surface of 
LAG3+ Treg in the steady state (11). 
These findings revealed the previously 
unknown cellular and molecular basis 
of TGF-β3 for the physiological con-
trol of humoral immunity.

Summary and perspective
TGF-βs have bi-functional roles in the 
immune system, whereby they regu-
late both pro-inflammatory and anti-
inflammatory activities. The biological 
activity of the three isoforms of TGF-β 
is similar in most in vitro experiments 
(10), whereas accumulating evidence 
demonstrates differences in their in 
vivo capabilities. However, we should 
be cautious when evaluating the roles 
of TGF-βs in the immune system. It has 
been reported that the levels of Tgfb1 
mRNA do not correlate with the dis-
tribution of TGF-β1 protein as meas-
ured by immunohistochemical stain-

ing (87). Membrane-bound TGF-β1 is 
important for the suppressive activity 
of CD4+CD25+ Tregs in spite of the 
fact that Tgfb1 mRNA is not elevated 
in CD4+CD25+ Tregs (88, 89). These 
findings highlight the importance of 
evaluating TGF-βs at the protein lev-
el. However, most of previous studies 
have examined TGF-β3 expression 
only at the mRNA level.
Some studies have illustrated the 
importance of the concentration of 
TGF-β1 in regulating regulatory and 
pro-inflammatory T cells. TGF-β1 can 
induce both Treg and Th17 cell devel-
opment, depending on whether pro-in-
flammatory cytokines such as IL-6 and 
IL-23 are present (58, 90). Further, the 
effect of the TGF-β family is affected 
by their concentration. Lower con-
centrations of TGF-β1 synergise with 
IL-6 and IL-21 to promote the initial 
differentiation of Th17 cells. Higher 
concentrations of TGF-β1 suppress 
Th17 cell differentiation by inducing 
Foxp3-mediated ROR-γt antagonism 
and repressing IL-23R expression (91, 
92). The concentration of TGF-β1 also 
affects its ability to directly suppress 
B cells. Although TGF-β1 (1.0 ng/ml) 
selectively stimulates IgG2b secretion 
from LPS-stimulated B cells, higher 
concentrations of TGF-β1 typically 
suppresses all Ig isotypes (93). These 
physiological complexities make it 
difficult to assess the isotype-specific 
roles of each TGF-β isoform in the im-
mune system.
Of special interest are the possible 
side effects of TGF-β treatment. High 
concentrations of TGF-β1 may induce 
undesirable side effects. Systemic ad-
ministration of TGF-β1 at >20 μg/day, 
but not 5 μg/day (75), increases the 
incidence of anaemia and thrombo-
cytopenia in mice (94). These effects 
are transient and completely reversed 
two weeks after cessation of treatment. 
Other possible side effects of TGF-β1 
treatment are fibrosis (17, 19), obe-
sity, and impaired glucose tolerance 
(95). Intriguingly, TGF-β3 not only 
induces scar-free healing (17), but also 
improves glucose tolerance and pheno-
typic changes in adipocyte morphology 
(96), suggesting the potential thera-
peutic advantages of TGF-β3. Further 



S-67

Role of TGF-β3 in the regulation of immune responses / T. Okamura et al.

detailed studies on the role of TGF-β3 
in the immune system may provide a 
promising new therapeutic approach 
for autoimmune diseases.
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