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ABSTRACT
Inflammatory bowel diseases (IBD) 
are believed to arise from a complex 
interplay of environmental factors, ge-
netic susceptibility, epithelial barrier 
defects and dysregulation of the intesti-
nal immune system. Although the exact 
mechanisms of contribution and inter-
ference of these players are still not 
clear, significant advances have been 
achieved in understanding the immu-
nopathogenesis of IBD in recent years 
resulting in novel and targeted thera-
peutic strategies. 
We will begin this review by giving a 
brief outline of current pathogenetic 
concepts of IBD and then focus on the 
description of the present knowledge 
of T cell function and regulation in the 
context of IBD. Moreover, we will sum-
marise the progress on the emerging 
field of gut homing and delineate some 
implications for future therapeutic ap-
proaches.

Introduction
Crohn’s disease (CD) and ulcerative 
colitis (UC) are the main entities of 
inflammatory bowel disease (IBD). 
While both of them are relapsing in-
flammatory disorders mainly involv-
ing the human gut and sharing many 
symptoms, they are distinguished by 
differences in terms of intestinal dis-
tribution, histological appearance and 
some clinical complications (1, 2). 
Up to now, there is no comprehensive 
conception of IBD etiopathogenesis, 
which would be able to clearly explain 
the development of these diseases. In-
stead, it is agreed, that IBDs result from 
multifactorial events, which combine 
and interfere in a sophisticated manner. 
Lately, significant progress has been 
made in understanding many of these 
contributors. 
For example, the role of genetic sus-
ceptibility is becoming more and more 
elucidated as novel techniques are 

available for identifying single nu-
cleotide polymorphisms (SNPs). Since 
2001, when the NOD2 locus was the 
first to be associated with an increased 
risk for CD (3, 4), the list of candidate 
genes is constantly growing and a re-
cent international study comprising 
over 75.000 samples reported a total 
of 163 susceptibility loci (5). Interest-
ingly, 53 of these loci were specific for 
either UC or CD, while the others en-
tailed a risk for both IBD phenotypes, 
therefore supporting the clinical obser-
vation that both disorders are distinct 
entities in spite of considerable over-
lap. Interestingly, a remarkable propor-
tion of the proteins encoded by these 
genes, such as IL-23 receptor, IL-10, 
IFN-γ or STAT3, is implicated in T cell 
function, which will be the centre of 
this review. 
Empirical observations have identi-
fied a number of environmental fac-
tors affecting the risk for developing 
IBD, among them smoking, lifestyle, 
hygiene, diet and the use of antibiotics 
and non-steroidal anti-inflammatory 
drugs (6). Many of these seem to in-
fluence the ‘internal environment’ of 
the gut microbiome. Consistently, sig-
nificant changes in the intestinal mi-
crobiota like a decrease in the overall 
biodiversity and an enrichment of se-
lected commensal organisms can be 
observed, promoting the idea that al-
terations in the interaction of gut bac-
teria and the mucosal immune system 
are a key event in IBD pathogenesis 
(7). Furthermore, evidence suggests 
that defects in the intestinal epithelial 
barrier function contribute therein by 
facilitating the access of the antigens 
of this dysbalanced microbiome to mu-
cosal immune cells (8). 
In genetically predisposed hosts, this 
translocation of luminal antigens final-
ly leads to a dysregulated immune re-
sponse driven by excessive and altered 
cytokine signalling of mucosal mac-
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rophages, T cells and innate lymphoid 
cells and resulting in mucosal inflam-
mation with subsequent tissue injury 
and clinical symptoms (9).
While a detailed look at all the cellular 
players of the mucosal immune sys-
tem would be beyond the scope of this 
review, we will focus on highlighting 
the role of T cells and their gut homing 
properties in the context of IBD. 

T cells in IBD
Infiltration of the mucosa by T cells 
and the increased production of pro-
inflammatory T cell cytokines are a 
hallmark of IBD (10). Blockade of 
TNF-α, which is produced by mucosal 
T cells as well as macrophages, fibro-
blasts and adipocytes (11, 12) is one of 
the most successful therapies for both 
CD and UC. Moreover, T cells are in-
dispensable in many animal models of 
IBD (13). 
Upon encounter with their cognate an-
tigen, naïve T cells differentiate into ef-

fector (Teff) or regulatory (Treg) T cells 
depending on the present cytokine en-
vironment (14). A growing body of re-
search indicates both an altered balance 
of different T cell lineages in IBD in 
general and differences between T cell 
signalling and function in CD and UC 
(Fig. 1). On the whole, CD is predomi-
nantly characterised by an enhanced 
aggregation and activation of the ef-
fector T cell lineages T helper (TH)1 
and TH17, while counterregulatory Treg 
function is inappropriately low. To the 
contrary, the profile of lamina propria T 
cells in UC mainly resembles TH2 cells 
and TH17 cytokines are also more fre-
quently produced than in healthy con-
trols (1, 2, 9, 10, 15-19). Collectively, 
even though many other cell types of 
the innate and adaptive immune system 
are indispensable for explaining the im-
mune response in IBD, T cells are the 
key coordinators as they integrate and 
orchestrate signalling and functions of 
other cells (9).

TH1 cells
TH1 cells differentiate upon stimulation 
of naïve CD4+ cells with IL-12 and IL-
27 under the control of transcription 
factors like T-bet and signal transducer 
and activator of transcription (STAT)4  
and can be identified by the produc-
tion of the TH1 cytokines IFN-γ and 
IL-2 (16, 20, 21). Both these cytokines 
and the transcription factors have been 
found to be increased in CD compared 
to UC and healthy controls (10, 18, 
19, 22), supporting the notion that CD 
might be a typical ‘TH1-disease’. Find-
ings in multiple animal models have 
encouraged this idea. For example, 
STAT4 deficiency and overexpres-
sion caused reduced and exacerbated 
experimental colitis respectively (23, 
24). The blockade of IL-12/IL-23 p40 
by a monoclonal antibody significantly 
ameliorated trinitrobenzene sulphonic 
acid (TNBS)-induced colitis (25) and 
similarly, antibody-induced neutralisa-
tion of IFN-γ prevented TH1 responses 

Fig. 1. CD4+ T cell subsets in IBD.
Upon encounter with their cognate antigen presented by antigen presenting cells (APCs) T cells differentiate into distinct subsets of effector T cells (TH1, 
TH2, TH9, TH17, TH22) or regulator T cells (Tregs). This process is governed by the respective surrounding cytokine environment and goes along with the 
induction of specific transcription factors in each lineage as indicated. Thereupon, the secretion of specific cytokines or cytokine combinations is induced. 
TH2 and TH9 cells and their respective cytokines are believed to be predominantly involved  in UC pathogenesis (yellow box), while TH1 cells are thought to 
play a major role in CD (red box). TH17 cells have been shown to be implicated in both conditions (orange box). Treg and TH22 cells have rather protective 
functions in the context of intestinal mucosal inflammation (green box). TCR – T cell receptor.
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and development of inflammation in a 
T cell transfer model of colitis (26). 
When it was tried to translate these 
results from bench to bedside, how-
ever, the first attempts in targeting TH1 
signalling were quite disappointing. 
Namely, the anti-IFN-γ antibody fon-
tolizumab failed to induce remission 
in CD (27). This confirms that it seems 
helpful, but not completely sufficient 
to categorise IBDs in a simple TH1/
TH2 paradigm and emphasises that it is 
necessary to extend the view on other 
CD4+ T cell subsets.

TH2 cells
The development of TH2 cells occurs 
under the stimulus of IL-4 and subse-
quent upregulation of the transcription 
factors GATA3 and STAT6. Their cy-
tokine profile is defined by the produc-
tion of IL-4, IL-5 and IL-13 (28). As T 
cells from the mucosa of patients with 
UC have been demonstrated to secrete 
more IL-5 and IL-13 (but less IL-4) and 

express more GATA3, UC is thought to 
constitute a (slightly atypical) TH2-like 
disease with important contribution 
of IL-13-secreting natural killer (NK) 
cells (10, 29, 30, 31). Mechanistically, 
it seems that IL-13 negatively affects 
the intestinal epithelial barrier by in-
creased apoptosis of intestinal epitheli-
al cells (IECs), enhanced expression of 
pore-forming claudin-2 and decreased 
epithelial wound healing (30). Com-
patibly, STAT6-deficient mice were 
protected from oxazolone-induced 
colitis and displayed a marked reduc-
tion in TH2 cytokines and a decrease in 
claudin-2 (32). Furthermore, a specific 
IL-13 antibody prevented the devel-
opment of experimental colitis in this 
model (33) as well as blockade of the 
TH2 response-inducing cytokine IL-25 
or its receptor (34). In contrast, though, 
a recent study could not confirm an ele-
vated IL-13 production in UC (35) and 
phase II studies of the IL-13 antibodies 
tralokinumab and anrukinzumab in UC 

could not demonstrate clinical effec-
tiveness (36, 37). Therefore, as applies 
for the TH1-like milieu in CD, further 
studies will be necessary to clarify the 
exact contribution of the TH2 cytokines 
to the pathogenesis of UC and to deter-
mine, whether alternative approaches 
in targeting TH2 signalling might be 
therapeutically effective.
In 2005, it was shown that IL-33, 
which is recognised by its receptor 
ST2, induces TH2 cells to produce TH2-
associated cytokines (38). Since then, 
several groups have found an upregula-
tion of both IL-33 and ST2 in UC and 
proposed a role of this signalling axis 
in driving the TH2-like response in this 
disorder (39, 40, 41, 42, 43). Interest-
ingly, ST2 deficiency significantly im-
proved colitis by promotion of mucosal 
healing in two experimental models 
and treatment with IL-33 led to epi-
thelial barrier breakdown (44). In ad-
dition, IL-33 worsened dextran sodium 
sulphate (DSS)-induced colitis in an 

Fig. 2. Overview of gut homing of T cells.
Left side: Naïve T cells express L-Selectin and CCR7, which allow them to home to Peyer’s patches via interaction with carbohydrate-modified MAdCAM-1 
and CCL21. There, CD103 (αE)+ dendritic cells (DCs) not only function as antigen presenting cells but induce the expression of specific gut homing markers 
like α4β7 and CCR9 at the same time. Retinoic acid produced by DC-derived retinal dehydrogenase importantly contributes to this upregulation. 
Right side: Mature T cells that have been shaped like that are then able to home to the intestinal lamina propria. This homing process involves tethering to 
and rolling at the venular wall. Lymphocytes are then activated by chemokines, most importantly CCL25, which binds to CCR9, and come to a halt through 
interaction of integrins with their receptors, for example α4β7 with the gut-specific MAdCAM-1 or α4β1 with VCAM-1. GPR15 is a newly designated 
homing marker with an up to now unknown ligand. After extravasation, especially intraepithelial lymphocytes express αEβ7 to interact with epithelial E-
Cadherin. The role of αEβ7 in lamina propria lymphocytes is still obscure.
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IL-4-dependent manner (45). Howev-
er, it has to be mentioned that a protec-
tive effect of IL-33 in TNBS-induced 
colitis has been described as well (46). 
Moreover, a recent study linked IL-33/
ST2 signalling to Treg differentiation, 
accumulation and maintenance rather 
than TH2 responses in intestinal in-
flammation. Thus, the precise function 
of this axis has to be defined in future 
investigations, but yet it seems possi-
ble that novel therapeutic approaches 
might arise in this context.

TH17 cells
The discovery of the IL-12 family 
member IL-23 in the year 2000 (47) 
and the demonstration of its ability to 
act independently of IL-12 (48) even-
tually led to the identification of IL-
23-dependent TH17 cells as a distinct 
T cell subset (49). IL-23, together with 
other cytokines like IL-6, IL-1β, IL-21, 
TNF-like protein (TL)1A and trans-
forming growth factor (TGF)-β (50-
53) serves as inductor of TH17 develop-
ment. On transcription factor level, this 
is controlled by STAT3, retinoic acid 
orphan receptor (ROR)γt, interferon 
regulatory factor (IRF)4 and basic leu-
cine zipper transcription factor (Batf) 
(54). The secretion profile of TH17 cells 
is mainly characterised by IL-17A, IL-
17F, IL-22 and IL-26 (55, 56).
Meanwhile, the functional role of TH17 
cells in IBD has been extensively stud-
ied. Special interest has been dedicated 
to this T cell population as several ge-
netic polymorphisms associated with 
IBD – for example IL-23R, IL-12p40, 
STAT3, JAK2 (5) – are related to TH17 
differentiation. Moreover, it seems that 
TH17 cells contribute to the link be-
tween the intestinal microbiome and 
the dysregulated immune response in 
IBD, because a specific upregulation 
of TH17 cell activity by intestinal bac-
teria could be demonstrated (57, 58). 
Further evidence for an important role 
of TH17 cells in the context of IBD has 
been added by the finding that TH17 cy-
tokines are excessively produced by T 
cells in the lamina propria of UC and 
CD patients (15, 17, 59, 60). Addition-
ally, surface markers of TH17 cells (61) 
and the above mentioned transcription 
factors responsible for TH17 develop-

ment could be demonstrated in the gut 
of IBD patients (15, 62).
The exact nature of TH17 cells in IBD 
still needs to be clarified as different 
studies report both pro- and anti-in-
flammatory functions in mice as well 
as in human. The potential of T cells 
deficient for IRF4, RORγt or IL-23 to 
induce experimental colitis after T cell 
transfer is greatly decreased or even 
absent (63-65), indicating that TH17 
cells are a key driver of intestinal in-
flammation. To the contrary, deficiency 
or inhibition of the TH17 cytokines IL-
17A and IL-17F did not alter or even 
exacerbate colitis (64, 66, 67), which is 
consistent with the idea that TH17 cy-
tokines either have redundant effects 
or in some cases even exert protective 
function. The latter assumption was 
especially proposed for IL-17A (66). 
Other reports favouring a rather tissue-
destructive role of TH17 cytokines in-
clude an IL-17-mediated upregulation 
of pro-inflammatory cytokines such as 
IL-6, IL-8, IL-1β and TNF-α (68, 69) 
and an increase in chemokine produc-
tion and leukocyte infiltration (70). At 
the same time, TH17 cells can also pro-
duce IL-22 (55), which seems to pro-
tect from mucosal inflammation and is 
discussed below in greater detail.
Furthermore, a clinical trial targeting 
IL-17A with the neutralising antibody 
secukinumab not only showed the in-
efficacy of this treatment for CD but 
also reported more adverse events (71). 
This impressively confirms that neither 
have TH17 cells in human IBD been 
sufficiently characterised up to date nor 
can a single cytokine reflect the nature 
of a whole T cell subset. Thus, inhibit-
ing or promoting several cytokines at 
the same time or targeting the under-
lying T cell population itself (e.g. on 
transcription factor level) might be a 
potentially successful strategy.
What further complicates the situation 
is that effector T cell lineages are plas-
tic and can transdifferentiate into other 
T cell subsets. Particularly, TH17 cells 
(and IFN-γ producing TH17/TH1 cells) 
were shown to be able to become TH1 
cells, when IL-12 and IL-23 is present, 
while TGF-β is lacking (72-74). Con-
sistently, Treg cells inhibited the tran-
sition of TH17 cells to TH1 cells (75). 

Moreover, it has been recently shown, 
that TH1 cells can also turn into TH17 
cells upon stimulation with TGF-β 
and IL-6 (76). It is therefore possible 
that such converted T cell populations 
that are clearly distinct from their pre-
cursors might critically contribute to 
maintenance of mucosal inflammation 
(73) and thereby make the identifica-
tion of the right therapeutic targets 
even more difficult.

TH9 cells
TH9 cells have been recently recog-
nised as an independent effector T cell 
subset (77). Their differentiation is 
controlled by IL-4 in combination with 
TGF-β, which induce the transcription 
factors purine-rich box 1 (PU.1), IRF4 
and STAT6 (78-80). In turn, signalling 
via T-box expressed in T cells (T-bet) 
and GATA-binding protein 3 (GATA3) 
is suppressed, which would promote 
TH1 and TH2 development respectively 
(81, 82). TH9 cells are characterised by 
producing IL-9 and sometimes also IL-
10 (83). They are therefore believed to 
play a role in pathologic processes such 
as allergic airway inflammation, con-
trol of tumour growth and autoimmune 
encephalomyelitis (84-87).
Today, there is considerable evidence, 
that TH9 cells are also implicated in the 
immunopathogenesis of IBD, especially 
of UC. In two recent studies, signifi-
cantly more IL-9 producing and PU.1-
expressing T cells could be detected in 
the mucosa of UC patients. Moreover, 
IL-9 receptor was upregulated on the 
intestinal epithelium of these patients 
(88, 89). Consistently, oxazolone-in-
duced colitis in mice, an animal model 
mimicking UC, was crucially dependent 
on TH9 cells as mice deficient for IL-9, 
treated with an IL-9 antibody or lacking 
PU.1 in CD4+ cells developed less se-
vere colitis. Impairment of the intestinal 
epithelial barrier through downregula-
tion of barrier proteins such as claudin 
2 and inhibition of mucosal wound heal-
ing by IL-9 were demonstrated to be 
likely mediators of these findings (88). A 
later study revealed that IL-9 deficiency 
also protects from TNBS-induced colitis 
(90). Collectively, these results suggest, 
that IL-9 might become a future target 
for IBD treatment.
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TH22 cells
Like TH9 cells, TH22 cells have only 
been lately assigned the status of an 
independent effector T cell population. 
While their signature cytokine IL-22 
was first identified to be produced by 
TH17 cells, it is now clear that there 
exists a distinct subset of CD4+ T cells 
that produces IL-22, but not IL-17 or 
IFN-γ. TH22 cells are further charac-
terised by the expression of the C-C 
chemokine receptor type (CCR)4, 
CCR6 and CCR10, which are implicat-
ed in skin homing and were therefore 
initially believed to be important in 
skin pathologies (91). A TH22 pheno-
type is promoted by stimulation of na-
ïve CD4+ T cells with IL-6 and TNF-α 
and controlled by the aryl hydrocarbon 
receptor (AHR) as the most important 
transcription factor (92). 
Increasingly, TH22 cells are found to be 
of importance in the orchestration of T 
cell balance in IBD, although they are 
not the only source of IL-22 in the hu-
man intestine. Initial studies showed 
that IL-22 function reduces disease se-
verity in animal models of colitis and 
identified STAT3 as potential mediator 
of this effect (93, 94). Later, it was dem-
onstrated, that IL-22-induced STAT3 
activation in intestinal epithelial cells 
(IECs) is vital for mucosal wound heal-
ing (95). Moreover, it seems to be nec-
essary for the secretion of antibacterial 
peptides and mucus proteins (96, 97). A 
protective role for TH22 was confirmed 
by the demonstration that an agonist of 
AHR is protective in different mouse 
models of colitis, while both an AHR 
antagonist and an IL-22-blocking anti-
body caused increased disease severity 
(98). Furthermore, it was found that the 
number of TH22 cells is decreased in 
the lamina propria of UC patients and 
that increased TGF-β might lead to this 
depletion, therefore suggesting a patho-
genetic relevance of TH22 cells and 
also favouring protective functions. To 
the contrary, production of IL-22 by T 
cells contributed to intestinal inflamma-
tion in a memory T cell induced colitis 
model (99), indicating that TH22 effects 
may vary depending on the inflamma-
tory context.
Taken together, the exact function of 
TH22 cells in human IBD remains to be 

elucidated, but most findings point at 
a rather anti-inflammatory role, which 
advocates the idea that enhancing TH22 
function might be a prospective thera-
peutic strategy in IBD.

Treg cells
Regulatory T cells (Tregs) are a T cell 
subset with marked immunosuppres-
sive properties and have therefore at-
tained particular interest in relation to 
IBD. They are found in two different 
forms: ‘Natural’ Tregs (nTregs) and ‘in-
duced’ Tregs (iTregs), which are both 
characterised by expression of the tran-
scription factor forkhead box protein 3 
(Foxp3) (100, 101). The first develop 
in the thymus upon high-affinity bind-
ing of antigens to their T cell receptor 
(TCR) and concomitant IL-2 stimula-
tion with subsequent STAT5 activation 
leading to Foxp3 upregulation (102, 
103). The latter emerge from naïve T 
cells in the periphery driven by TGF-β, 
which activates Smad 2, 3 and 4 mol-
ecules to induce Foxp3 (104-106). It 
has to be noted that TGF-β is also cru-
cial for TH17 development as discussed 
above. Yet, differentiation to TH17 cells 
requires co-signalling of IL-6 and reti-
noic acid has been shown to be capable 
of suppressing TH17 in favour of Treg 
development (107, 108). Interestinly, 
bacterial metabolites such as the short-
chain fatty acid butyrate have also been 
reported to promote intestinal iTreg for-
mation (109, 110). Similarly, iTregs are 
induced by TGF-β, which is released 
from apoptotic cells (111). This sug-
gests, that in intestinal tissues facing 
loads of bacteria and with a high turn-
over of self-antigens, a tight control of 
the Treg/Teff balance is necessary to pre-
vent pathology.
Tregs exert their immunosuppressive 
role by different means. One important 
mechanism is the secretion of anti-in-
flammatory cytokines such as TGF-β, 
IL-10 or IL-35 (112, 113, 114). Another 
is based upon direct interaction with 
other cells through receptors like cyto-
toxic T lymphocyte-associated protein 
4 (CTLA4), glucocorticoid-induced 
tumour necrosis factor receptor (GITR) 
or galectin-1 (115-117). The potential 
anti-colitogenic activity of Tregs has 
been demonstrated in different mouse 

models. Mice that lack signalling 
through the Treg cytokines TGF-β or IL-
10 spontaneously develop colitis (118, 
119). Co-transfer of Tregs in transfer 
colitis models suppresses colitis (120, 
121) and TGF-β and IL-10 are essen-
tial mediators of this anti-inflammatory 
function (122, 123). 
Different studies aiming at determin-
ing the presence and characterisation of 
Tregs in human IBD have shown that ac-
tive IBD lesions contain more Tregs than 
appropriate controls and that the anti-
inflammatory potential of these Tregs is 
preserved (124, 125). While this finding 
seems to contradict the perception of an 
undercontrolled inflammatory response 
in IBD, it can be explained by two ap-
proaches: First, it seems that not the ab-
solute number of Treg cells but the ratio 
of Teff and Treg cells is important (121, 
124) and the increased Treg population 
in IBD therefore fails to control the 
even more aggrandised Teff accumula-
tions. Accordingly, a first study evalu-
ating the adoptive transfer of expanded 
Tregs in CD to extend the Treg pool sug-
gested potential efficiacy (126). And 
second, there is strong evidence, that 
Teff cells are resistant to Treg-mediated 
suppression, e.g. by upregulation of 
inhibitory Smad7 (112). The relevance 
of this concept has already been proven 
by a clinical study exploring a Smad7 
antisense oligonucleotide in the therapy 
of CD, which showed tremendous ben-
eficial effects (127). Taken together, di-
rectly increasing the Treg population by 
adoptive transfer or indirectly booster-
ing its function are two very promising 
strategies that are currently evaluated 
for clinical therapy. 

Gut homing
Before exerting their deleterious or 
protective functions within the lamina 
propria, T cells have to enter the gut 
mucosa in a complex process called 
homing, which takes place in postcapil-
lary venules. A multistep model is used 
to explain the different events involved. 
First, mainly selectins initiate tether-
ing to activated endothelial cells and 
rolling of lymphocytes at the venular 
wall, followed by chemokine-induced 
lymphocyte activation and eventually 
integrin-mediated arrest. After intensi-
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fication of the adhesion and slow crawl-
ing along the epithelium, cells will then 
migrate paracellularly or transcellularly 
to the site of inflammation (128, 129). 
This sequence has attracted notable at-
tention in the last years as specifically 
interfering with gut homing may be a 
promising extension of the therapeutic 
armamentarium in IBD. Consistently, 
the α4 integrin antibody natalizumab 
was successfully used to treat IBD pa-
tients (130) until some cases of progres-
sive multifocal leukoencephalopathy 
(PML) were reported (131). These were 
believed to be due to inhibition of leu-
kocyte trafficking to the central nerv-
ous system and have therefore lead to 
intensified efforts to develop selective 
gut homing strategies. As a result, the 
α4β7 integrin blocking antibody ved-
olizumab has found entry into clinical 
practice recently (132, 133).
A gut homing phenotype is induced on 
naïve T cells in the mucosa associated 
lymphoid tissue (MALT) of the intes-
tine (Fig. 2). Expression of CCR7 and 
L-selectin allows these naïve T cells to 
access intestinal secondary lymphoid 
tissues via interaction with chemokine 
C-C motif ligand (CCL)21 and carbo-
hydrate-modified mucosal addressin 
cellular adhesion molecule (MAd-
CAM)-1 respectively (134, 135). Here, 
particularly CD103+ dendritic cells 
(DCs) function as antigen-presenting 
cells and induce the  upregulation of 
specific gut-homing markers such as 
α4β7 and CCR9 (136). Retinoic acid 
serves as transcription factor for α4β7 
and CCR9 and, interestingly, only gut 
DCs express retinal dehydrogenases, 
which process retinol to retinoic acid 
(137). Other receptors reported to be 
expressed on gut homing lymphocytes 
include CCR10, CCR5 or CXCR3. Af-
ter T cells have been primed this way, 
they re-enter the circulation and are 
then able to specifically home to the 
gut lamina propria, where they may en-
gage in the IBD immune response.
Α4β7 is the ligand of MAdCAM-1, 
which is exclusively found on venules 
in the intestine (138). In contrast, vas-
cular cell adhesion molecule (VCAM)-
1, which is the receptor for the integrin 
α4β1 can also be detected in other tis-
sues including the central nervous sys-

tem (131). Therefore, the latter interac-
tion is believed to be responsible for the 
infectious complications observed with 
natalizumab. CCR9 is the receptor for 
CCL25, a chemokine which is mainly 
produced by epithelial cells of the small 
intestine, but is not found in the colon 
(139). While targeting α4β7 by vedoli-
zumab is now an established strategy in 
inhibiting T cell trafficking to the gut 
mucosa, targeting CCR9 with vercinon, 
an oral inhibitor, yielded rather disap-
pointing results in clinical trials (140).
Currently, several other compounds 
interfering with gut homing, are evalu-
ated. One is PF-00547659, an antibody 
directed against MAdCAM-1, which 
was effective in moderate to severe UC 
in a recent phase II-trial (141). Moreo-
ver, the β7-antibody etrolizumab has 
shown promising results for the treat-
ment of UC so far (142). As β7 appears 
not only in combination with α4 but 
also with αE, etrolizumab might offer a 
dual mechanism of action. Though, the 
knowledge about αEβ7 is scarce, but 
the picture which can be drawn today 
is that α4β7 is downregulated on CD8+ 
T cells after they reach the intestinal 
lamina propria and αEβ7 is upregulat-
ed in turn in a CCL25-mediated man-
ner (143). αEβ7 may then interact with 
E-Cadherin, its main ligand, on the 
basolateral side of the intestinal epithe-
lium and therefore favour retention of 
lymphocytes in the epithelial compart-
ment (139). Consistently, the vast ma-
jority of intraepithelial lymphocytes is 
αEβ7+ (144). What precise role αEβ7 
plays in the context of intestinal hom-
ing of CD4+ cells, however, has not 
been addressed so far. Moreover, αE 
knockdown in mice results in a reduced 
infiltrate of lymphocytes not only in the 
epithelium but also in the lamina pro-
pria, where E-Cadherin is not present 
(145), and αEβ7 is expressed by lam-
ina propria lymphocytes (LPL) in IBD 
patients (146). A possible explanation 
could be that αEβ7 also plays a role 
in extravasation as it has been shown 
to promote adhesion of lymphocytes 
to endothelial cells in an E-Cadherin-
independent fashion through a yet un-
known receptor as well (147). 
Recently, GPR15 has been proposed as 
another receptor which is specifically 

involved in homing to the large intes-
tine. In a GPR15-deficient mouse mod-
el, especially Treg homing was down-
regulated and resulted in aggravation of 
colitis (148). In contrast, almost none 
GRP15+ Tregs could be found in human 
LPL (149). Consistently, a first assess-
ment of GPR15 function in human IBD 
favoured a role of GPR15 for homing 
of Teff but not Treg cells (150).
Thus, gut homing is an emerging field 
with a promising outlook for novel tar-
geted therapies. Yet, considerable ef-
forts have to be undertaken to clarify 
the lots of unresolved questions con-
cerning this complex process.

Concluding remarks
While it is beyond doubt that T lym-
phocytes are key drivers of both UC 
and CD and many of the pro- and anti-
inflammatory properties of different 
T cell subsets have been elucidated, 
most of the attempts to specifically tar-
get the involved cytokines, receptors 
or signalling pathways have failed or 
demonstrated only limited efficiacy in 
recent years (9). Therefore, alternative 
approaches will be necessary to offer 
new therapies to the large portion of 
patients, who do still not respond to the 
currently available drugs. Inhibiting 
the gut homing of T cells and promot-
ing Treg populations or functions seem 
to be two such approaches with great 
potential. Others might be individual-
ised medicine aiming at the identifica-
tion of patients who will respond to a 
certain treatment (151), the targeting 
of several cytokines at one time (152) 
or sophisticated strategies to deliver 
drugs to the desired site of action (153, 
154). Regarding these points, there 
is hope that the next years will bring 
forth new and successful strategies to 
control T cell-mediated inflammation 
in IBD.
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