impact factor, citescore

Full Papers


Literature mining, gene-set enrichment and pathway analysis for target identification in Behçet’s disease

1, 2, 3


  1. Computational Biology, GlaxoSmithKline Medicine Research Centre, Herts, UK.
  2. Computational Biology, GlaxoSmithKline Medicine Research Centre, Herts, UK.
  3. Department of Renal Medicine, Box 57, Addenbrooke’s Hospital, Cambridge, UK.

2016 Vol.34, N°6 ,Suppl.102
PI 0101, PF 0110
Full Papers

Free to view
(click on article PDF icon to read the article)

PMID: 27791955 [PubMed]

Received: 13/06/2016
Accepted : 07/09/2016
In Press: 18/10/2016
Published: 25/10/2016


To use literature mining to catalogue Behçet’s associated genes, and advanced computational methods to improve the understanding of the pathways and signalling mechanisms that lead to the typical clinical characteristics of Behçet’s patients. To extend this technique to identify potential treatment targets for further experimental validation.
Text mining methods combined with gene enrichment tools, pathway analysis and causal analysis algorithms.
This approach identified 247 human genes associated with Behçet’s disease and the resulting disease map, comprising 644 nodes and 19220 edges, captured important details of the relationships between these genes and their associated pathways, as described in diverse data repositories. Pathway analysis has identified how Behçet’s associated genes are likely to participate in innate and adaptive immune responses. Causal analysis algorithms have identified a number of potential therapeutic strategies for further investigation.
Computational methods have captured pertinent features of the prominent disease characteristics presented in Behçet’s disease and have highlighted NOD2, ICOS and IL18 signalling as potential therapeutic strategies.

Rheumatology Article